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Abstract: When it comes to animal production, humans have always depended on gut feelings, 
shared knowledge, and sensory inputs, even when domesticating animals started thousands of  
years ago. Thanks to this, our achievements in farming and animal husbandry have been 
substantial thus far. More centralized, large-scale, and efficient animal farming may be possible 
as a result of both the increasing demand for food and the development of sensing technologies. 

As we know it, it could revolutionize animal husbandry. This study takes a high-level look at the 
possibilities and threats that sensor technology poses to animal producers’ ability to increase 
their meat output and other animal products. This study aims to investigate how sensors, big data, 
artificial intelligence, and machine learning may assist animal producers in  improving animal 
comfort, increasing productivity per hectare, decreasing production costs, and  increasing 
efficiency. It delves into the difficulties and restrictions of technology as well. This  study 

explores the many uses of animal farming technology in order to comprehend its worth in  
assisting farmers in bettering the health of their animals, increasing their profitability, and 
decreasing their impact on the environment. 
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1 Introduction 

Traditional animal husbandry has always been small-scale, operated by a group of people rather than an 

organization. Also, most farmers who raised animals did not have access to things like smartphones, affordable 

computers, and fast internet until around ten years ago. At the moment, both of these things are evolving at a rapid  

pace. The demand for meat and other animal products will increase by 70% globally over the next 30 years.  We now 

know that as global incomes and populations have risen, so has meat consumption. Because of this, we need to boost  

animal output while cutting back on land, water, and other natural resource allocations. Secondly, the percentage of 

people accessing the internet through mobile devices has surpassed 50%. The computers on Apollo 11, the first 

manned spacecraft to land on the moon, were much more powerful than our current pocket -sized phones. Millions of 

animal producers can now access computing power because of this. Reports indicate that farmers will need to increase 

output by 70% in the next fifty years only to meet the global demand for meat and other animal products [1]. Given  

the scarcity of arable land and other natural resources, it will be imperative to develop more efficient cultivation 

methods in order to satisfy this surging demand. 

More cattle on the land. This raises the question of whether the present approaches to animal husbandry, which  

depend on physical effort, are sufficient. This also means that we should find ways to enhance our animal husbandry 

practices for greater yields. Computers, sensors, cloud computing, machine learning, and artificial intelligence are 

causing significant shifts in various industries. Their efficiency and output are enhanced [2]. Learning how these 

innovative tools could boost crop productivity is an important area to look into. 
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Key cost drivers in animal farming 
Animal husbandry costs are primarily affected by the stocking rate, which is the maximum number of animals 

allowed to graze on a given area of land for a given time period. Feed and disease control are the two main costs in  

animal production, which farmers themselves admit. Farmers can increase efficiency and decrease production costs by 

increasing the number of animals raised in a given system, taking advantage of economies of scale [3]. However,  

physical interventions are necessary in some way or another for most modern animal farming methods. People 

oversee the production process, assess the rates of food provision, and identify and treat illnesses. The result is a 

decrease in the total number of animals that can receive care. A lower number of people caring for a far higher 

number of animals would, in principle, remove the most significant barrier to increasing output and optimizing profits. 

 
 

• Mechanistic models, sensors, big data & advanced algorithms 

 
We use mechanical models in complex systems to understand why things happen the way they do. A mechanistic 

model is expected to provide a thorough explanation for the patterns seen in the system under study.  When dealing with 

complex circumstances involving several factors, this technique shines. In many cases, this means that the problem 

cannot be solved by doing experiments alone. However, solving such a complex problem calls for the systematic 

collection and analysis of massive volumes of data. Animal farming mechanistic models can solve complex problems 

like finding the optimal nutrient composition of feed, assessing animal management for performance, finding ways to 

reduce nutrient excretion into the environment, and forecasting results in new situations. 

The use of mechanistic models in animal husbandry requires a large and diverse dataset. Information on local 

weather, air quality, animal vocalizations, visual records of various animal motions, and similar data on animal 

behavior are all examples of what could fall into this category. Acquiring data in real time is made efficient by using 

multiple sensors. But obviously, such a system needs to be able to store a lot of audio, video, and textual data. No 

ordinary computer could possibly store and process such massive amounts of data every single day of the year. Its 

computing and storage capacities will be exhausted very soon. Anything that can detect or keep tabs on physical,  

chemical, biological, or any other kind of event is called a sensor. 

 
A tool that humans or machines can use to record and gather data pertaining to mechanical properties or a mix of 

these attributes. The needs of the animal husbandry industry dictate the classification of sensor technology.  Sensors 

for precise milking robots and feeding systems are part of this category, as are applications designed for specific 

species, such as those found in pigs, ruminants, and poultry. Cameras, infrared thermal imaging sensors,  

thermometers, radio frequency identification tags, accelerometers, motion detectors, pedometers, microphones, and 

face recognition machines are all examples of hardware sensors. 

Among the many practical applications of these sensors are temperature regulation, weight estimation, animal 

behavior, emotional contagion, feed dosage, water consumption, and many more. Another way to classify sensors is 

by whether they are invasive or not and whether they are wearable or not. Big data offers a scalable way to store 

massive amounts of data on a distant computer, w h i c h  i s  essential for integrating advanced technology in 

animal husbandry. Algorithms powered by advanced AI and ML can sift through this mountain of data, make 

predictions, and notify farmers of any outliers (Fig. 1). The combination of sensors, big data, and robust AI and ML 

algorithms in the field of animal agriculture thus provides a whole solution. In this paper, we collectively refer to 

these various technological advancements as “advanced technologies” on multiple occasions. 

 
1. Advanced technology and animal farming 

 
• Finding ways to optimize performance 
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In practice, these advanced technologies can be used to find the best answers to different problems in animal 

husbandry. Case in point: finding the most cost-effective ways to increase 

 

Fig. 1. The collection of technologies that we refer to as advanced technologies can help animal farmers 

create better outcomes. 

Improving output, maximizing effectiveness, and creating ideal dietary formulas [4]. Relevant and contextually 

appropriate solutions can be generated by advanced models that combine aspects like heredity, environment, and 

managerial priorities. When a system gathers and analyzes more diverse datasets, it increases the probability of 

achieving optimal and proper responses [6]. Another perk of this method is that it would give farmers a data-driven 

or evidence-based strategy. 

 
• Understanding complex systems 

 
Thanks to technological progress, we can now study complex systems, like biological ones, from the inside out.  

Data analysis can help us understand complex animal systems better by allowing us to extract important information 

[6]. Finding the fractional rates of rumen degradation [7] or exact rates of mammary cell development [8] are only two 

examples of how they might help us organize experimental data and calculate essential parameters. Still, anything 

can go wrong with technology, no matter how sophisticated. They are great tools for finding areas where knowledge 

is missing or assumptions about system management are wrong [6]. The inability to faithfully reproduce reality serves 

a useful purpose in that it highlights unanswered questions, potentially erroneous assumptions, or a lack of data. 

Though it may not always provide desirable outcomes, incorporating cutting-edge technology into animal husbandry 

can help us learn more and better understand animal systems. 

• Recognizing complex patterns 

 
Data in many formats, such as text, audio, video, and images, can be expertly analyzed by modern technology. After 

that, advanced algorithms can make sense of the datasets by classifying them or predicting future trends. Animal 

production systems have used sophisticated data analysis and algorithms for pattern recognition-based disease detection 

and animal monitoring [6]. To monitor changes in animal behavior, for example, scientists have developed a plethora of 

sensors, in addition to sophisticated data processing and machine learning models. These alterations may point to 

changes in temperature, damage, metabolic state, or general health. Animal identification is another application  for 

these sensors [6]. At the moment, we have a variety of sensors that can correctly classify animal behaviors, including 

sleeping, thinking, eating, and moving around. Combining optical sensors [10], 3-axis accelerometers and 

magnetometers [9], or depth video cameras [11] with machine learning models effectively classifies and predicts animal 

behavior, according to research articles. 

In addition, we present more examples of how applying machine learning and big data could help diagnose animal 

diseases earlier than before. The noises generated by grill chickens, both healthy and infected with Clostridium  

perfringens, were recorded by Sadeghi et al. [12] as an example. Five datasets were identified and analyzed by the 

researchers using an ANN model. This model successfully differentiated between sick and healthy birds at 66.6% 

accuracy on day 2 and 100% on day 8 after infection. Identifying or even anticipating disease outbreaks early is 

possible because infections can produce observable differences in movement patterns [13] and surface temperature of 

animals [14]. 
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• Predictive abilities 
The ability of contemporary technology to foretell and project outcomes of economic importance, like BW, milk yield, 

or egg production, is now at our fingertips. An example of this is using a support vector machine classification  model 

to precisely predict the. When the variations in the herd’s body weight over time are known, the body weight (BW) of 

individual cattle can be calculated. When there were insufficient data points for body weight  measurements, and 

longer-term predictions were required, this Method performed better than using individual animals’ regression models. 

In order to track the BW of developing pigs, several researchers have proposed using visual image analysis platforms 

based on machine vision. These researchers include Pomar and Remus (5), Parsons et al. (16), and White et al. (17). 

Appropriate feed allocations can be assessed using this method. Such predictive abilities could revolutionize animal 

production by bringing about new efficiency and larger advantages. 

 
1. Identifying, predicting & preventing diseases using sensors 

 

As said before, finding, forecasting, and preventing animal diseases all add up to a hefty sum. There 

are three significant ways that farmers typically handle animal infections: either doing nothing, actively 

seeking out veterinary help, or using a mix of antibiotics and veterinarian intervention. 

 
Modern technological advancements, such as sensors, big data, AI, and ML, present a fresh chance for farmers.  

With this technology, vital signs, including animal movement, air quality, and food and fluid intake, can be 

continuously monitored, rather than problems being addressed after the fact or proactive measures like visiting 

veterinarians. Farmers can now anticipate, detect, and proactively reduce disease outbreaks, even before they develop  

on a large scale, thanks to continuous data collection and advanced artificial intelligence and machine learning 

algorithms [69-73]. To clarify, sensors can actually track the vital signs of animals, not just people, all the time.  There 

are two significant benefits to this method. It is possible to reduce production costs by using one of these methods to  

reduce the number of farmers required to care for a greater number of animals. Also, before any visible signs appear,  

this technique might notify farmers that a disease may be on the horizon. As a result, farmers will be able to take swift  

action to prevent catastrophic damages [18]. 

Extensive livestock facilities hold a myriad of animals collectively and can be severely damaged during an 

epidemic of a highly contagious disease. Without immediate preventative actions, the farmer will have a hard time 

controlling the spread of the infectious disease in this setting. When symptoms first appear, it is often too late to do 

anything about it. A combination of animal deaths, worse health outcomes, and financial setbacks can result from an 

uncontrolled disease’s rapid expansion [19]. On the other hand, a state-of-the-art farm with a network of sensors can 

immediately notify the farmer of any abnormal behavior, even in its early phases. 

 
• Sensors, big data & machine learning 

The ability to quickly collect, process, and analyze large datasets is a hallmark of automated systems. 

They cannot make educated choices in the absence of evidence. They can help people make better decisions by 

gathering and analyzing large amounts of data. On a farm, a number of sensors can let farmers keep tabs on how 

animals are behaving right now [20]. In order to track, quantify, and understand changes in animal behavior, 

sophisticated algorithms can use massive datasets. It can help farmers make better decisions and act  faster when 

diseases strike [21, 22]. 
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At this time, there are a variety of sensors available to farmers that can track changes in animals’ mobility, food 

intake, sleeping habits, and even the air quality in their shelters. A computer capable of handling massive volumes of 

data stores and processes the initial data. In the end, ML algorithms highlight any differences or breaks from  the 

norm. Early detection of several diseases in pigs and lambs has been made possible through the use of sensors, big 

data, and ML algorithms. This is accomplished by observing sluggish movement, delayed reaction times, and 

reduced activity levels that occur prior to the emergence of other outward signs of illness [18, 19, and 23]. However,  

farmers find it difficult to notice these changes using unaided human eyesight when dealing with large groups of  

animals. Similarly, it is difficult for a farmer or caregiver to notice changes in Watching a sick animal’s unusual 

eating habits, drinking habits, and bodily movements within a large animal population. Quickly predicting and 

avoiding disease outbreaks can be made possible by sensors, big data, and machine learning, which can be vital for 

farmers [24]. 

For instance, air sensors used in the poultry industry can now predict when coccidiosis, a gastrointestinal disease 

that can spread quickly among birds without apparent symptoms, will start [25]. One way to detect this sickness is to  

continuously evaluate the air quality. There is a clear association between the number of sick birds and the increase in  

airborne volatile organic compound (VOC) concentrations. Even before a farmer or doctor may notice the change, air 

monitors can detect it. Farmers can quickly take action to stop the spread of the disease if they are informed. Multiple 

animals' lives are spared, and financial losses are reduced by using this method. Similarly, forecasting many diseases 

in larger animals is now possible with the use of sensors, big data, and robust algorithms, which is much better than  

what humans are capable of. To illustrate the point, cows with mastitis, an udder disease, produce less milk overall 

and of lower quality. It has long been accepted that somatic cell count (SSC) and electric conductivity (EC) measures 

are the gold standards for diagnosing mastitis [26]. Having said that, these manual readings often end up being 

inaccurate, unstable, and useless. Automatic sensors and algorithms can now reliably collect data, predict when cows 

are likely to get mastitis, and take measures to reduce that risk [27]. 

 
Early disease detection tools have been around for a while. Modern technology allows us to do this with tools like  

RtPCR. However, they were too costly to be applied on a massive basis. Sensors, extensive data, and ML algorithms 

now provide a significant cost advantage over conventional detection methods (Fig. 2). For a fraction of the cost, 

they can predict when deadly viruses like African swine flu will spread and stop them in their tracks [19]. 

Significantly, state-of-the-art tech can predict the spread of many infectious diseases well in advance of their general 

epidemic (Table 1). On the flip side, computers can analyze animal movements and predict when a condition, like 

lameness, will manifest. During the preclinical stage of lameness, changes in mobility, overuse of particular body 

parts, and inactivity in other areas are reliable indicators [28]. The third most crucial agricultural disease is lameness, 

drastically reducing milk production and increasing the risk of injury [29]. Farmers can lessen the impact of 

significant financial losses by planning ahead for lameness. The mobility of infected pigs is reduced, according to 

studies. It can drop by as much as 10% in the first two days of infection. The separation of sick animals from healthy 

ones can be facilitated in this way, preventing the spread of disease [19]. In the end, environmental sensors, such as 

Farmers, can help reduce the occurrence of bacterial infections and diarrhea in pigs by adjusting humidity, gas 

generation, and temperature [25]. All of these cases show how sensors, big data, and AI could help farmers avoid 

costly and invasive disease predictions and prevention. 
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Fig. 2. Difference between predictive and reactive paradigms of managing diseases among animals. 
 
 

Table: 1 how advanced technology can help animal farmers predict & prevent diseases. 

 

2. Improving animal health using facial recognition systems 

 
It is an important task to be able to identify a particular animal in a group. For a long time, herd management has 

been a huge challenge, especially for large-scale producers. To achieve this on a large scale, no practical and 

compassionate technological alternatives existed before. Radiofrequency identification tags offered the fastest 

answer. Their efficiency was limited, but they were cheap and did the job. RFID tags aren’t without their flaws. 

Farmers used to have to put the tags in each animal’s ear. In addition to being a painstaking ordeal for the farmer,  

this also distressed the animals. In addition, problems emerged when trying to scan many RFID tags at once. Because 

of this, farmers couldn’t get useful information when animals migrated in groups, which happens quite often. Last but  

not least, the expensive RFID scanners installed on farms were vulnerable to bodily harm. Human face recognition  

has been the subject of much research in the last several decades. Several security-related applications have used 

facial recognition software, including improved surveillance systems, threat detection, and access control.  New face 

recognition algorithms can now identify and classify a wide range of animal behaviors. Here is the user's text: "[31]." 

Previous research on sheep [35], pigs [31], and cattle [32–34] found promising results when studying facial 

expressions. Previous Eigen faces-based face recognition algorithms did, however, have certain limitations. To give 

only one example, it can detect patterns with an accuracy of only 77% [36]. A large-scale farmer handling several 

animals would not find the discrepancy practicable due to its huge size. 
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Hardware and software advancements in recent decades have allowed us to quickly handle large amounts of raw 

data and produce valuable results. The VGG-face model [37], Fisherfaces [38], and convolutional neural networks are  

three separate face recognition approaches that can now be used rather than just one. This non -invasive imaging 

technology has a 96.7% success rate in identifying specific pig faces in a farm setting. With this gadget,  farmers may 

finally say goodbye to useless RFID tags and hello to efficient, widespread animal monitoring. This can help farmers 

save a ton of money and cut down on labor requirements. 

These technologies are now entering a phase of development where they will be used in real agricultural fields 

rather than just in labs. For example, a 98.3 percent success rate in identifying individual cow faces has been  

achieved by merging the cow-face detection system with the PANSNet-5 identification model [40]. These numerous 

face detection and recognition algorithms can currently differentiate between different animal faces in complicated 

real-time scenarios, regardless of the amount of available data or the degree of shape distortion [41]. In addition to 

improving our knowledge of the animal’s traits, these advances in face recognition have a number of other potential 

practical applications outside animal identification. Mental and emotional condition. These days, we can tell an  

animal’s emotional state only by watching its eye and ear movements. When an animal’s eyelids are partially closed, 

and its ears are pointed backward, it shows that it is relaxed. On the flip side, animals who are agitated or distressed 

could have their ears perked up and more sclera showing [42]. 

Now, with the help of technology, we can learn about the difficulties animals face even when we’re not physically 

there. For example, it’s possible that there’s a problem with the feeding stations if we see a lot of distressed cows in the  

feedlots. More research is required to confirm this finding. These studies can occasionally reveal facts that the general  

public fails to notice, like the dearth of feeding spots [42]. 

 
It may also help us recognize signs of suffering in sheep. It is feasible to find signs of disease, physical damage, or 

predator attacks while conducting a more comprehensive examination. The Sheep Suffering Facial Expression Scale 

(SPFES) allows for precise evaluation of discomfort and suffering in sheep [43]. Technological progress is making it  

easier and more accessible for farmers to monitor their cattle in real-time and detect problems with greater precision. 

The health and welfare of the animals may improve as a result [44]. 

 
3. Gains in optimizing feed efficiency & energy intake 

 
Between forty percent and sixty percent of a dairy farm’s total expenditures can be attributable to feed [45]. One 

of the biggest drains on this sector’s coffers is raising animals for food [46]. Animal production is adversely affected 

when they do not receive enough water and food. Modern farmers keep a close eye on this. They can now 

accomplish this with more accuracy thanks to technological advancements. 

The amount of food and liquid consumed may vary significantly. There are a number of factors that can significantly 

affect feed intake, including calving, heat, and feed mix. Proper nutrition for animals requires a feed that strikes a 

balance between bulky (low energy, high volume) and concentrated (high energy, low volume) components [50]. 

Animal metabolism can be improved by utilizing optimal feed ratios. 

The feed efficiency can be calculated by considering the following factors: feed intake, animal weight gain [46], 

and, if applicable, milk and egg output. Unfortunately, manual sorting isn’t always an option because these traits  

depend on so many diverse and non-linear factors. With the use of RGB-D cameras, farmers can more precisely 

measure how much feed each cow consumes [51]. In addition, TDIDT, ENET, SSD, ARIMA, and CNNs are just a 

few of the advanced algorithms that farmers can use to fine-tune and improve feed expenditures according to their 

animals’ individual needs [46, 49-52]. As shown in Table 2. 



M.Irfan et al. IJCIS, 2023 
 

                                                                                Muhammad Irfan IJCIS V 2, I 4, PP 38-55(Oct-December 2023) 
 45 

 

Accurate predictions of farm animal productivity can be obtained using technological means [53]. 

Parameters, including body condition score (BCS), milk yield components, and parity, can be used to assess their  

energy expenditures when nursing. Hence, using the existing on-farm data, we can approximate the metabolic state of 

cows. Farmers can benefit from ML techniques by precisely assessing different parts of their dairy businesses. Some 

examples of these are determining breeding values [53], predicting milk yield [54], calving time [55], and diagnosing  

mastitis [57, 58] (Fig. 3). Sensors also have several other uses, such as helping to track changes in cow behavior to 

determine whether they are in estrus [21] or if they are actively digesting their food efficiently [49]. This strategy will 

help farmers succeed in the long run by increasing their output of high-quality milk [51, 59]. 

 
Table 2 

 

How advanced algorithms collect data to help farmers monitor the feed intake vs the efficiency of the feed. 

Algorithms Data collection method Reference 

 
Top-down induction of decision trees (TDIDT) algorithm Weight 

And concentration of food, Drones, and manual entries [49] 

Random Forest Algorithm elastic net NET) 

and nearest shrunken centroid algorithm 

Metabolic rate, Gene expression, Average 

daily weight gain, and Average Back fat gain 

[46] 

 

Sing Shot multi-box Detector (SSD) algorithm Body Condition Score (BCS) through the multicamera 

system [52] Auto-Regressive Moving Average model 

(ARIMA) Feeding weight of dry and concentrated milk. 

Production by each cow [50] 

Convolutional Neural Networks (CNNs) RGB camera, RFID for cow feed intake, and 

Milk production measurement and frequency 

 

 
Make it possible for them to earn more money. Using motion and sound sensors to track animal behavior,  

acidosis in cows can be detected [60]. Furthermore, there is a 90% success rate in adequately predicting 

when calves will be born. This may supersede more expensive, time-consuming, and often inaccurate 

solutions. The pain and difficulties of giving birth can be lessened if the exact time of delivery can be 

predicted. When it comes to managing groups of animals, this is a huge step forward [61]. 

 

 

 

 
 

[51] 
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4. Towards better outcomes 

 

• Lower antibiotic usage & fodder requirements 
This study found that farmers and animal health can benefit from using sensors, big data, and 

machine learning. It can also help us move towards a future of less cruel and eco-conscious farming, 

which is a little-known fact. It could significantly contribute to cutting down on feed and antibiotic 

usage. As a result, lower antibiotic resistance [63] and more carbon sequestration [62] may occur. 

In addition, technological advancements can help us better understand the feelings of animals. 

• Artificial intelligence for emotional contagion 
According to social psychologists, “emotional contagion” is when people start acting out other 

people’s feelings. On the other hand, it might be a sign that someone is easily affected by the  

feelings of those around them while they are living in close quarters with them [64]. The primary 

function of emotions in animals is to enable a quick reaction for efficient environmental coping. As 

a group, they can move closer to the goal or away from danger more easily [65, 66]. 

Additionally, research shows that changing people’s perceptions of an 

The way a person engages with their immediate environment is malleable [67]. A variety of social 

interactions, such as mating contests, play, nursing, and group defense, can be effectively managed through  

emotional communication. One way to help other farm animals develop empathy and other desirable traits is 

to have them synchronize their emotional actions with one another [68]. This may result from a stronger 

sense of group cohesion and more robust social bonds among the herd as a whole [69].  

The impact of emotions on people is an area where we are expanding our studies. Emotional contagion 

and emotional expressions are currently our primary research foci because of their potential to boost the 

health of huge populations [70]. For instance, some animals use vocal signals to convey different types of 

emotions [71]. A strong Correlation between vocal cues and emotional responsiveness has also been shown  

by us [72]. Separate research found that when domestic pigs heard a distress call from another pig, they 

exhibited behavioral and cardiac responses [73]. A recent study found that when goats heard other goats, 

they tended to tilt their heads to the right. According to this, goats utilize their left hemispheres to process 

and correlate non-threatening voice signals [74]. These studies shed enough light on the relationship between 

voice cues and emotional states to warrant further inquiry. 

Machine learning-based AI can analyze vocalizations, olfactory signals, and other pertinent data to help 

determine the components contributing to emotional contagion. As shown in Figure 4, this analysis can be  

utilized to identify the beginning of a particular illness or stress. This can significantly improve the living 

conditions and general well-being of farm animals. Emotional contagion research can benefit from social 

network analysis by assessing quantitative (number of interactions) and qualitative (kind of relationship, 

such as agonistic) data. Improved emotional regulation and cattle welfare can result from this,  as might 

increase our capacity to foresee the spread of positive and negative stimuli within a group [75]. 
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Fig. 3. A representation of how machine learning algorithms might interpret data to create 

optimal growth conditions in dairy farming. 
 

 

Fig. 4. Flow diagram showing the neural network for emotional contagion of farm animals. An example of 

Convolutional Neural Network (CNN) architecture used for pig face recognition [80]. 

 

5. Won't technology be bad for farmers? 

 
• Farmer concerns 
It is critical to understand how farmers value technology in relation to their farming operations. As they 

weigh the pros and cons of physical barriers, farmers consider the advantages of big data analytics, sensor 

platforms, and machine learning for their farming operations, as well as the risks to their animals and their 

credibility as competent livestock managers. 

New, state-of-the-art technologies like deep learning, AI, and ML are quickly finding a home in the animal  

husbandry industry. Optimal food consumption [49], illness forecasting [18], animal monitoring [2], and 

overall animal well-being [59] are all achieved using smart agricultural technologies. But  along with these 

technical advancements come massive amounts of data. To tackle future problems, machine learning 

algorithms will use this data as input. But, even with all the advancements in modern  animal husbandry, 

there are still problems. It is easy to see three significant drawbacks. 
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The data’s own use presents an issue first and foremost. Distant cloud computers store massive amounts of 

data produced by technological goods and services. This is often used to gain an advantage for businesses 

[2]. Nowadays, prominent companies such as John Deere and Monsanto collect, use, and even trade 

farmers’ agricultural data [76]. On this issue, farmers are currently involved in disputes with major firms. 

An increasing number of people are worried that data exploitation could have serious consequences [77]. To 

prevent the misuse of its consumers’ data, tech companies need to come up with better solutions. 

Additionally, there are specific cases where technology does not work. Occasionally, farmers hesitate or 

run across obstacles when trying to implement cutting-edge technology on their farms. In countries that are 

part of the global food security strategy (GFSS), anywhere from 10% to 50% of the population has access 

to and uses the internet. The widespread adoption of digital farming technology is hindered by its restricted 

availability [78]. A quarter of mobile phone owners in GFSS countries use their phones to get agricultural 

data and use tools for managing cattle or animal production systems [79]. This demographic consists 

largely of farmers and those who work on the family farm. Various environmental,  physical, and 

situational constraints might prevent technology from being used efficiently in many situations. Businesses 

will have to get inventive to find ways around these restrictions if they want to be successful in the future. 

 

A lack of sufficient studies or supporting evidence has also led to criticism of corporations for promoting 

emerging technologies to farmers. Many people think that digital corporations are taking advantage of 

farmers to prove their claims for their gifts and supplies. This puts farmers in danger while allowing digital 

companies to reduce their risk. Due to these technologies' immaturity, farmers risk suffering enormous 

financial losses should something go wrong. For large-scale livestock farms, this is especially true when 

trying to predict the spread of epidemic diseases [18]. 

• Current challenges 
 

The current selection of commercially available sensors for use in automated, continuous, real-time 

monitoring of livestock is very limited, making it difficult to make reliable predictions and implement  

efficient management practices in this area. Unfortunately, a dearth of sensors can detect  biomarkers in pig 

and cow exhaled air that could shed light on the animals’ metabolic states and gut flora.  To address this 

disparity, new biosensing devices and sensors combining ‘omics’ and non-omics approaches are required 

for the detection of biomarkers, miRNAs, volatile metabolites linked to smells, and other compounds. In 

addition, there are clear technological hurdles to think about, such as finding the best spot for the sensors, 

deciding on the right sampling rate, and coming up with a good way to transmit  the data. These issues 

impact the algorithms’ accuracy, the solution’s scalability, and the animal farm’s practicality. To 

significantly enhance the precision of forecasting the behavior of farm animals, it is necessary to evaluate 

the sensor locations, sampling rates, data analysis methods, and processing window sizes. 

 
6. Machine learning algorithms choice for data analysis 

 
To get the desired result in animal welfare evaluation, what kinds of machine learning characteristics 

are necessary, and which algorithms work best for classifying data? For example, it’s conceivable that 

merely a subset of five or seven traits, out of a total of forty-four, is adequate to get extremely accurate 

results. Consequently, large feature sets could be problematic in real-time systems because of the extra 

storage and processing requirements. 
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The incidence of ‘idea drifts,’ in addition to energy limits, is a major technical hurdle to real-time and 

long-term monitoring of farm animal behavior. When a concept’s data distributions change, the sensor 

platform and analysis system will need to adapt, which can lead to drifting. It is often assumed that in 

supervised classification problems, the data used to train the model comes from the same distribution as the 

points to be classified later. The dynamic nature of many categorization problems renders this assumption  

unworkable. One example is when a system is trained to do a specific task. Behavioral taxonomies can also 

show how environmental diversity and variation affect animal performance. Animal characteristics (such as 

breed and age) and environmental variables (including shifts in weather, geography, soil, and farm -specific 

constraints) can both contribute to these discrepancies. 

 

 
Fig. 5. The hierarchy of better animal farming outcomes. Advanced technology has the potential to help 

farmers achieve better outcomes. 

 

• In pursuit of more complex & better outcomes 

 
Machine learning (ML), big data, and sensors are the hallmarks of the modern era. These advanced 

technologies are anticipated to improve animal husbandry’s efficiency and produce greater benefits in the next  

decade. There will be fewer mistakes made by humans as a result as well. Agricultural profits, animal welfare,  

and overall efficiency will all see significant improvements as a result. In addition, it can help us achieve more 

than just financial benefits and efficiency advantages by enabling better animal welfare results. Figure 5 shows 

that it may also help us create holistic, caring, and environmentally responsible approaches. 
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2. Conclusions 
 

The rise of modern animal husbandry is being propelled using sensing technologies, big data, and 

machine learning, all of which are part of Agriculture 4.0. There is an urgent need for real-time access to 

data on livestock behavior, feed consumption, and output amid a pandemic when producers, nutritionists, 

and vets cannot physically visit farms, barns, and feed mills. Accessible remotely,  useful data can be 

gathered using sensing devices. Meeting customer needs is effectively achieved through cost reduction 

and better performance. Standardization in worldwide data collection and sharing is noticeably lacking 

despite the fast growth of AI and ML algorithms. Using artificial intelligence and sensing technologies to 

help farmers spot trends and find solutions to pressing problems in modern animal husbandry will be 

more critical as farms get more linked to technology. Even though there are many restrictions, unknowns, 

and unanswered questions, one thing is sure. In the next 10 years, we will learn how the livestock 

business may benefit from partnering with artificial intelligence. 

Declaration of Competing Interest 

 
The writers now state that they are free from all personal or financial relationships or conflicts of interest 

that may have affected the results reported in this work. 

 

References 

1. M.M. Rojas-Downing, A.P. Nejadhashemi, T. Harrigan, S.A. Woznicki, Climate change 

and livestock: impacts, adaptation, and mitigation, Clim. Risk Manag. 16 (2017) 145–163, 

https://doi.org/10.1016/j.crm.2017.02.001. 

2. S. Wolfert, L. Ge, C. Verdouw, M.J. Bogaardt, Big data in smart farming–a review, Agric. 

Syst. 153 (2017) 69–80, https://doi.org/10.1016/j.agsy.2017.01.023. 

3. J.G. Stigler, The economies of scale, J. Law Econ. 1 (1958) 54–71. 

4. N.S. Ferguson, Optimization: a paradigm change in nutrition and economic solu- tions, 

Adv. Pork Prod. 25 (2014) 121–127. 

5. C. Pomar, A. Remus, Precision pig feeding: a breakthrough toward sustainability, Anim. 

Front. 9 (2) (2019) 52–59, https://doi.org/10.1093/af/vfz006. 

6. J.L. Ellis, M. Jacobs, J. Dijkstra, H. van Laar, J.P. Cant, D. Tulpan, N. Ferguson, et al.,  

Animal (2020) 1–15, https://doi.org/10.1017/S1751731120000312. 

7. J. France, J. Dijkstra, M.S. Dhanoa, S. Lopez, A. Bannink, Estimating the extent of 

degradation of ruminant feeds from a description of their gas production profiles observed  

in vitro: derivation of models and other mathematical considerations, Br. J. Nutr. 83 (2) 

(2000) 143–150, https://doi.org/10.1017/S0007114500000180. 

8. J. Dijkstra, J. France, M.S. Dhanoa, J.A. Maas, M.D. Hanigan, A.J. Rook, D.E. Beever, A 

model to describe growth patterns of the mammary gland during pregnancy and lactation, J. Dairy 

Sci. 80 (10) (1997) 2340–2354, https://doi.org/ 10.3168/jds.S0022-0302 (97)76185- X. 

9. R. Dutta, D. Smith, R. Rawnsley, G. Bishop-Hurley, J. Hills, G. Timms, D. Henry, 

Dynamic cattle behavioural classification using supervised ensemble classifiers, Comput.  

Electron. Agric. 111 (2015) 18–28, https://doi.org/10.1016/j.compag.2014.12.002. 

https://doi.org/10.1016/j.crm.2017.02.001
https://doi.org/10.1016/j.agsy.2017.01.023
https://doi.org/10.1093/af/vfz006
https://doi.org/10.1017/S1751731120000312
https://doi.org/10.1017/S0007114500000180
https://doi.org/
https://doi.org/10.1016/j.compag.2014.12.002


M.Irfan et al. IJCIS, 2023 
 

                                                                                Muhammad Irfan IJCIS V 2, I 4, PP 38-55(Oct-December 2023) 
 51 

10. V. Pegorini, L. Zen Karam, C.S.R. Pitta, R. Cardoso, J.C.C. Da Silva, H.J. Kalinowski, 

R. Ribeiro, F.L. Bertotti, T.S. Assmann, In vivo pattern classification of ingestive behavior in  

ruminants using FBG sensors and machine learning, Sensors 15 (11) (2020) 28456–28471, 

https://doi.org/10.3390/s151128456. 

11. S.G. Matthews, A.L. Miller, T. PlÖtz, I. Kyriazakis, Automated tracking to measure 

behavioural changes in pigs for health and welfare monitoring, Sci. Rep. 7 (1) (2017) 1– 

12, https://doi.org/10.1038/s41598-017-17451-6. 

12. M. Sadeghi, A. Banakar, M. Khazaee, M.R. Soleimani, An intelligent procedure for the 

detection and classification of chickens infected by clostridium perfringens based on their  

vocalization, Braz. J. Poult. Sci. 17 (4) (2015) 537–544, https://doi. Org/10.1590/1516- 

635X1704537-544. 

13. M.A. Jaddoa, A.A. Al-Jumeily, L.A. Gonzalez, H. Cuthbertson, Automatic tem- perature 

measurement for hot spots in face region of cattle using infrared ther- mography, Proc. Int. 

Conf. Informat. Contr. Autom. Robot. (2019) 29–31. 

14. J. Alonso, A. Villa, A. Bahamonde, Improved estimation of bovine weight trajec- tories 

using support vector machine classification, Comput. Electron. Agric. 110 (2015) 36–41, 

https://doi.org/10.1016/j.compag.2014.10.001. 

15. D.J. Parsons, D.M. Green, C.P. Schofield, C.T. Whittemore, Real-time control of pig 

growth through an integrated management system, Biosyst. Eng. 96 (2) (2007) 257–266, 

https://doi.org/10.1016/j.biosystemseng.2006.10.013. 

16. R.P. White, C.P. Schofield, D.M. Green, D.J. Parsons, C.T. Whittemore, The effec- tiveness 

of a visual image analysis (VIA) system for monitoring the performance of 

growing/finishing pigs, Anim. Sci. 78 (3) (2004) 409–418, https://doi.org/10. 

1017/S1357729800058811. 

17. K. VanderWaal, R.B. Morrison, C. Neuhauser, C. Vilalta, A.M. Perez, Translating big data 

into smart data for veterinary epidemiology, Front. Vet. Sci. 4 (2017) 110, 

https://doi.org/10.3389/fvets.2017.00110. 

18. E. Fernández-Carrión, M. Martínez-Avilés, B. Ivorra, B. Martínez-López, Á.M. Ramos, J.M. 

Sánchez-Vizcaíno, Motion-based video monitoring for early de- tection of livestock diseases: the 

case of African swine fever, PLoS One 12 (9) (2017), 

https://doi.org/10.1371/journal.pone.0183793. 

19. A. Nasirahmadi, B. Sturm, A.C. Olsson, K.H. Jeppsson, S. Müller, S. Edwards, O. Hensel, 

Automatic scoring of lateral and sternal lying posture in grouped pigs using image processing and 

support vector machine, Comput. Electron. Agric. 156 (2019) 475–481, 

https://doi.org/10.1016/j.compag.2018.12.009. 

20. L. Riaboff, S. Poggi, A. Madouasse, S. Couvreur, S. Aubin, N. Bédère, E. Goumand, A. 

Chauvin, G. Plantier, Development of a methodological framework for a robust prediction of the 

main behaviours of dairy cows using a combination of machine learning algorithms on 

accelerometer data, Comput. Electron. Agric. 169 (2020) 105179, 

https://doi.org/10.1016/j.compag.2019.105179f. 

21. B. Meunier, P. Pradel, K.H. Sloth, C. Cirié, E. Delval, M.M. Mialon, I. Veissier, Image 
analysis to refine measurements of dairy cow behaviour from a real-time location system, 
Biosyst. Eng. 173 (2018) 32–44, https://doi.org/10.1016/j.biosystemseng.2017.08.019. 

https://doi.org/10.3390/s151128456
https://doi.org/10.1038/s41598-017-17451-6
https://doi/
https://doi.org/10.1016/j.compag.2014.10.001
https://doi.org/10.1016/j.biosystemseng.2006.10.013
https://doi.org/10
https://doi.org/10.3389/fvets.2017.00110
https://doi.org/10.1371/journal.pone.0183793
https://doi.org/10.1016/j.compag.2018.12.009
https://doi.org/10.1016/j.compag.2019.105179f
https://doi.org/10.1016/j.biosystemseng.2017.08.019


M.Irfan et al. IJCIS, 2023 
 

                                                                                Muhammad Irfan IJCIS V 2, I 4, PP 38-55(Oct-December 2023) 
 52 

 

22. T. Van Hertem, E. Maltz, A. Antler, C.E.B. Romanini, S. Viazzi, C. Bahr,A. Schlageter- 

Tello, C. Lokhorst, D. Berckmans, I. Halachmi, Lameness detection based on multivariate 

continuous sensing of milk yield, rumination, and neck ac- tivity, J. Dairy Sci. 96 (7) (2013) 4286– 

298, https://doi.org/10.3168/jds.2012-6188. 

23. A.S. Dhoble, K.T. Ryan, P. Lahiri, M. Chen, X. Pang, F.C. Cardoso, K.D. Bhalerao, 

Cytometric fingerprinting and machine learning (CFML): a novel label-free, objec- tive 

method for routine mastitis screening, Comput. Electron. Agric. 162 

(2019)  505–513, https://doi.org/10.1016/j.compag.2019.04.029. 

24. F. Borgonovo, V. Ferrante, G. Grilli, R. Pascuzzo, S. Vantini, M. Guarino, A data- driven 

prediction method for an early warning of Coccidiosis in intensive livestock systems: a  

preliminary study, Animals. 10 (4) (2020) 747, https://doi.org/10.3390/ ani10040747. 

25. M. Gertz, K. Große-Butenuth, W. Junge, B. Maassen-Francke, C. Renner, H. Sparenberg, J. 

Krieter, Using the XGBoost algorithm to classify neck and leg activity sensor data using on-farm 

health recordings for locomotor-associated Diseases, Comput. Electron.Agric. 173 

(2020) 105404, , https://doi.org/10.1016/j. compag.2020.105404. 

26. A. Hidalgo, F. Zouari, H. Knijn, S. van der Beek, Prediction of postpartum diseases of  

dairy cattle using machine learning, Proc. World Congr. Genet. Appl. Livest. Prod. (2018) 

104. 

27. M. Taneja, J. Byabazaire, N. Jalodia, A. Davy, C. Olariu, P. Malone, Machine learning 

based fog computing assisted data-driven approach for early lameness detection in dairy 

cattle, Comput. Electron. Agric. 171 (2020) 105286, , https://doi. 

Org/10.1016/j.compag.2020.105286. 

28. D. Warner, E. Vasseur, D.M. Lefebvre, R. Lacroix, A machine learning based deci- sion 

aid for lameness in dairy herds using farm-based records, Comput. Electron. Agric. 169 

(2020) 105193, , https://doi.org/10.1016/j.compag.2019.105193. 

29. M. Ebrahimi, M. Mohammadi-Dehcheshmeh, E. Ebrahimie, K.R. Petrovski, 

Comprehensive analysis of machine learning models for prediction of sub-clinical mastitis: 

deep learning and gradient- boosted trees outperform other models, Comput. Biol. Med. 

114 (2019) 103456, , https://doi.org/10.1016/j.compbiomed.2019.103456. 

30. P. Ahrendt, T. Gregersen, H. Karstoft, Development of a real-time computer vision system 

for tracking loose-housed pigs, Comput. Electron. Agric. 76 

(2) (2011) 169–174, https://doi.org/10.1016/j.compag.2011.01.011. 

31. S.M. Porto, C. Arcidiacono, U. Anguzza, G. Cascone, The automatic detection of dairy 

cow feeding and standing behaviours in free-stall barns by a computer vision- based 

system, Biosyst. Eng. 133 (2015) 46–55, https://doi.org/10.1016/j. 

biosystemseng.2015.02.012. 

32. C. Arcidiacono, S.M.C. Porto, M. Mancino, G. Cascone, Development of a threshold- 

based classifier for real-time recognition of cow feeding and standing behavioural 

activities from accelerometer data, Comput. Electron. Agric. 134 (2017) 124–134, 

https://doi.org/10.1016/j.compag.2017.01.021. 

33. S. Kumar, S.K. Singh, A.K. Singh, Muzzle point pattern based techniques for in- dividual 

cattle identification, IET Image Process. 11 (10) (2017) 805–814, https:// 

doi.org/10.1049/iet-ipr.2016.0799. 

https://doi.org/10.3168/jds.2012-
https://doi.org/10.1016/j.compag.2019.04.029
https://doi.org/10.3390/
https://doi.org/10.1016/j
https://doi/
https://doi.org/10.1016/j.compag.2019.105193
https://doi.org/10.1016/j.compbiomed
https://doi.org/10.1016/j.compag.2011.01.011
https://doi.org/10.1016/j
https://doi.org/10.1016/j.compag.2017.01.021


M.Irfan et al. IJCIS, 2023 
 

                                                                                Muhammad Irfan IJCIS V 2, I 4, PP 38-55(Oct-December 2023) 
 53 

34. U.G. Barron, G. Corkery, B. Barry, R. Butler, K. McDonnell, S. Ward, Assessment of 

retinal recognition technology as a biometric method for sheep identification, Comput.  

Electron. Agric. 60 (2) (2008) 156–166, https://doi.org/10.1016/j. compag.2007.07.010. 

35. N. Wada, M. Shinya, M. Shiraishi, Pig face recognition using Eigenspace method, ITE 

Trans. Media Techn. Appl. 1 (4) (2013) 328–332. 

36. O.M. Parkhi, A. Vedaldi, A. Zisserman, Deep Face Recognition, (2015). P.N. Belhumeur, 

J.P. Hespanha, D.J. Kriegman, Eigenfaces vs. fisherfaces: re- cognition using class specific 

linear projection, Eur. Conf. Comput. Vis. 19 (7) (1996) 711–720. 

37. M.F. Hansen, M.L. Smith, L.N. Smith, M.G. Salter, E.M. Baxter, M. Farish, B. Grieve, 

Towards on-farm pig face recognition using convolutional neural networks, Comput. Ind. 

98 (2018) 145–152, https://doi.org/10.1016/j.compind.2018.02.016. 

38. C. Liu, B. Zoph, M. Neumann, J. Shlens, W. Hua, L. Li, L. Fei-Fei, A. Yuille, J. Huang, K. 

Murphy, Progressive neural architecture search, Eur. Conf. Comput. Vis. (2018) 19–34. 

39. L. Yao, Z. Hu, C. Liu, H. Liu, Y. Kuang, Y. Gao, Cow face detection and recognition based 

on automatic feature extraction algorithm, Proc. ACM Turing Celebration Conf. China 

(2019) 1–5. 

40. M. Battini, A. Agostini, S. Mattiello, Understanding cows’ emotions on farm: are eye 

white and ear posture reliable indicators? Animals 9 (8) (2019) 477, https://doi. 

Org/10.3390/ani9080477. 

41. K.M. McLennan, C.J.B. Rebelo, M.J. Corke, M.A. Holmes, M.C. Leach,F. Constantino- 

Casas, Development of a facial expression scale using footrot and mastitis as models of 

pain in sheep, Appl. Anim. Behav. Sci. 176 (2016) 

19–26, https://doi.org/10.1016/j.applanim.2016.01.007. 

42. K. McLennan, M. Mahmoud, Development of an automated pain facial expression 

detection system for sheep (Ovis Aries), Animals 9 (4) (2019) 196, https://doi.org/ 

10.3390/ani9040196. 

43. D. Amaral-Phillips, What Does it Cost to Feed your Cows? https://afs.ca.uky.edu/ 

files/what_does_it_cost_you_to_feed_your_cows.pdf, (2020). 

44. M. Piles, C. Fernandez-Lozano, M. Velasco-Galilea, O. González-Rodríguez, J.P. Sánchez, 

D. Torrallardona, M. Ballester, R. Quintanilla, Machine learning ap- plied to transcriptomic data to 

identify genes associated with feed efficiency in pigs, Genet. Sel. Evol. 51 (1) (2019) 10. 

45. M.H. Ghaffari, A. Jahanbekam, H. Sadri, K. Schuh, G. Dusel, C. Prehn, J. Adamski, B. 

Koch, H. Sauerwein, Metabolomics meets machine learning: longitudinal meta- bolite profiling in  

serum of normal versus overconditioned cows and pathway analysis, J. Dairy Sci. 102 (12) (2019) 

11561–11585, https://doi.org/10.3168/jds. 2019-17114. 

46. M.T. Gorczyca, K.G. Gebremedhin, Ranking of environmental heat stressors for dairy 

cows using machine learning algorithms, Comput. Electron. Agric. 168 (2020) 105124, ,  

https://doi.org/10.1016/j.compag.2019.105124. 

47. S. Nikoloski, P. Murphy, D. Kocev, S. Džeroski, D.P. Wall, Using machine learning to 

estimate herbage production and nutrient uptake on Irish dairy farms, J. Dairy Sci. 102 

(11) (2019) 10639– 10656, https://doi.org/10.3168/jds.2019-16575. 

48. R. da Rosa Righi, G. Goldschmidt, R. Kunst, C. Deon, C.A. da Costa, Towards combining 

data prediction and internet of things to manage milk production on dairy cows, Comput. 

Electron. Agric. 169 (2020) 105156, , https://doi.org/10. 1016/j.compag.2019.105156. 

https://doi.org/10.1016/j
https://doi.org/10.1016/j.compind.2018.02
https://doi/
https://doi.org/10.1016/j.applanim.2016.01.007
https://doi.org/
https://afs.ca.uky.edu/
https://doi.org/10.3168/jds
https://doi.org/10.1016/j.compag.2019.105124
https://doi.org/10.3168/jds.2019-16575
https://doi.org/10


M.Irfan et al. IJCIS, 2023 
 

                                                                                Muhammad Irfan IJCIS V 2, I 4, PP 38-55(Oct-December 2023) 
 54 

49. R. Bezen, Y. Edan, I. Halachmi, Computer vision system for measuring individual cow 

feed intake using RGB-D camera and deep learning algorithms, Comput. Electron. Agric. 

172 (2020) 105345, , https://doi.org/10.1016/j.compag.2020.105345. 

50. X. Huang, Z. Hu, X. Wang, X. Yang, J. Zhang, D. Shi, An improved single shot Multibox 

detector method applied in body condition score for dairy cows, Animals 9 (7) (2019) 470, 

https://doi.org/10.3390/ani9070470. 

51. S. Shahinfar, H. Mehrabani-Yeganeh, C. Lucas, A. Kalhor, M. Kazemian, K.A. Weigel, 

Prediction of breeding values for dairy cattle using artificial neural networks and neuro- fuzzy 

systems, Comput. Math. Meth. Med. (2012), https://doi. Org/10.1155/2012/127130. 

52. D. Gianola, H. Okut, K.A. Weigel, G.J.M. Rosa, Predicting complex quantitative traits  

with Bayesian neural networks: a case study with Jersey cows and wheat, BMC Genet. 12 

(1) (2011) 87, https://doi.org/10.1186/1471-2156-12-87. 

53. S. Shahinfar, D. Page, J. Guenther, V. Cabrera, P. Fricke, K. Weigel, Prediction of 

insemination outcomes in Holstein dairy cattle using alternative machine learning 

algorithms, J. Dairy Sci. 97 (2) (2014) 731–742, https://doi.org/10.3168/jds.2013-6693. 

54. M. Borchers, Y.M. Chang, K.L. Proudfoot, B.A. Wadsworth, A.E. Stone, J.M. Bewley, 

Machine-learning-based calving prediction from activity, lying, and ruminating behaviors  

in dairy cattle, J. Dairy Sci. 100 (7) (2017) 5664–5674, https://doi.org/ 10.3168/jds.2016- 

11526. 

55. D. Cavero, K.H. Tölle, C. Henze, C. Buxadé, J. Krieter, Mastitis detection in dairy cows 

by application of neural networks, Livest. Sci. 114 (2–3) (2008) 280–286, 

https://doi.org/10.1016/j.livsci.2007.05.012. 

56. Z. Sun, S. Samarasinghe, J. Jago, Detection of mastitis and its stage of progression by 

automatic milking systems using artificial neural networks, J. Dairy Res. 77 (2) (2010)  

168–175, https://doi.org/10.1017/S0022029909990550. 

57. Q. Fu, W. Shen, X. Wei, Y. Zhang, H. Xin, Z. Su, C. Zhao, Prediction of the diet energy 

digestion using kernel extreme learning machine: a case study with Holstein dry cows,  

Comput. Electron. Agric. 169 (2020) 105231, https://doi.org/10.1016/ 

j.compag.2020.105231. 

58. N. Wagner, V. Antoine, M.M. Mialon, R. Lardy, M. Silberberg, J. Koko, I. Veissier, 

Machine learning to detect behavioural anomalies in dairy cows under subacute ruminal  

acidosis, Comput. Electron. Agric. 170 (2020) 105233, https://doi.org/ 

10.1016/j.compag.2020.105233. 

59. A.S. Keceli, C. Catal, A. Kaya, B. Tekinerdogan, Development of a recurrent neural 

networks- based calving prediction model using activity and behavioral data, Comput. 

Electron. Agric. 170 (2020) 105285, https://doi.org/10.1016/j.compag.2020.105285. 

60. Can Cows Help Mitigate Climate Change? Yes, they can! https://daily.jstor.org/ can-cows- 

help-mitigate-climate-change-yes-they-can/, (2020). 

61. WHO, Antimicrobial Resistance in the Food Chain, 
https://www.who.int/foodsafety/areas_work/antimicrobial-resistance/amrfoodchain/en, (2020). 

62. J. Tsai, E. Bowring, S. Marsella, W. Wood, M. Tambe, A study of emotional con- tagion 

with virtual characters, Int. Conf. Intell. Virt. Agent (2012) 81–88. 

https://doi.org/10.1016/j.compag.2020
https://doi.org/10.3390/ani9070470
https://doi/
https://doi.org/10.1186/1471-2156-12-87
https://doi.org/10.3168/jds.2013-
https://doi.org/
https://doi.org/10.1016/j.livsci.2007.05.012
https://doi.org/10.1017/S0022029909990550
https://doi.org/10.1016/
https://doi.org/
https://doi.org/10.1016/j.compag
https://daily.jstor.org/
https://www.who.int/


M.Irfan et al. IJCIS, 2023 
 

                                                                                Muhammad Irfan IJCIS V 2, I 4, PP 38-55(Oct-December 2023) 
 55 

63. M. Mendl, O.H. Burman, E.S. Paul, An integrative and functional framework for the study 

of animal emotion and mood, Proc. Biol. Sci. 277 (1696) (2010) 2895–2904, 

https://doi.org/10.1098/rspb.2010.0303. 

64. E.S. Paul, E.J. Harding, M. Mendl, Measuring emotional processes in animals: the utility 

of a cognitive approach, Neurosci. Biobehav. Rev. 29 (3) (2005) 469–491, 

https://doi.org/10.1016/j.neubiorev.2005.01.002. 

65. E.J. Harding, E.S. Paul, M. Mendl, Cognitive bias and affective state, Nature. 427 

(6972) (2004) 312, https://doi.org/10.1038/427312a. 

66. B.L. Fredrickson, C. Branigan, Positive emotions broaden the scope of attention and 

thought- action repertoires, Cognit. Emot. 19 (3) (2005) 313–332, https://doi.org/ 

10.1080/02699930441000238. 

67. M. Špinka, Social dimension of emotions and its implication for animal welfare, Appl.  

Anim. Behav. Sci. 138 (3–4) (2012) 170–181, https://doi.org/10.1016/j. 

applanim.2012.02.005. 

68. J.L. Edgar, C.J. Nicol, C.C.A. Clark, E.S. Paul, Measuring empathic responses in 

animals, Appl. Anim. Behav. Sci. 138 (3–4) (2012) 182–193, https://doi.org/10. 

1016/j.applanim.2012.02.006. 
69. Ahmed, F., Asif, M. and Saleem, M., 2023. Identification and Prediction of Brain Tumor Using 

VGG-16 Empowered with Explainable Artificial Intelligence. International Journal of 

Computational and Innovative Sciences, 2(2), pp.24-33. 

70. Saleem, M., Khan, M.S., Issa, G.F., Khadim, A., Asif, M., Akram, A.S. and Nair, H.K., 2023, 

March. Smart Spaces: Occupancy Detection using Adaptive Back-Propagation Neural Network. In 

2023 International Conference on Business Analytics for Technology and Security (ICBATS) (pp. 

1-6). IEEE. 

71. Athar, A., Asif, R.N., Saleem, M., Munir, S., Al Nasar, M.R. and Momani, A.M., 2023, March. 

Improving Pneumonia Detection in chest X-rays using Transfer Learning Approach (AlexNet) and 

Adversarial Training. In 2023 International Conference on Business Analytics for Technology and 

Security (ICBATS) (pp. 1-7). IEEE. 

72. Abualkishik, A., Saleem, M., Farooq, U., Asif, M., Hassan, M. and Malik, J.A., 2023, March. 

Genetic Algorithm Based Adaptive FSO Communication Link. In 2023 International Conference 

on Business Analytics for Technology and Security (ICBATS) (pp. 1-4). IEEE. 

73. Sajjad, G., Khan, M.B.S., Ghazal, T.M., Saleem, M., Khan, M.F. and Wannous, M., 2023, March. 

An Early Diagnosis of Brain Tumor Using Fused Transfer Learning. In 2023 International 

Conference on Business Analytics for Technology and Security (ICBATS) (pp. 1-5). IEEE. 

74.  

https://doi.org/10.1098/rspb.2010.0303
https://doi.org/10.1016/j.neubiorev.2005.01.002
https://doi.org/10.1038/427312a
https://doi.org/
https://doi.org/10.1016/j
https://doi.org/10.%201016/j.applanim.2012.02.006
https://doi.org/10.%201016/j.applanim.2012.02.006

