
ISSN: 2959-698X (Online) IJCIS V 2, I 4 (Oct-December 2023)

Misbah Ali IJCIS V 2, I 4, PP 56-73(Oct-December 2023)
 56

Optimizing Software Defect Prediction: A Genetic Algorithm Based

Comparative Analysis

Misbah Ali1

1 Department of Computer Science, Virtual University of Pakistan, Pakistan;

*Corresponding Author: Email: talktomisbah.ali@gmail.com

Abstract: Software quality assurance is a crucial activity during the initial stages of the software

development life cycle. Various frameworks have been developed over the past two decades to

ensure software quality. By predicting defective modules at the initial stages, the resources

available for software development can be efficiently used to ensure the timely delivery of good-

quality software. Numerous software defect prediction models have been proposed and developed

using supervised and unsupervised machine learning methodologies and integrating statistical

methodologies. Software metrics contain hidden patterns that can be extracted and utilized to

identify defective modules using a machine-learning approach. This study applies a genetic

algorithm (GA) to select relevant features vital in predicting defective modules and explores

supervised classification techniques by incorporating seven widely used NASA datasets. The

three most used classification techniques, decision tree, support vector machine, and naïve

Bayes, were selected for the analysis. Precision, accuracy, recall, Matthew’s correlation

coefficient, F-measure, and receiver operating characteristics were selected as the performance

parameters. The results of this study can serve as a baseline for comparing and verifying the

results of new models that implement GA for optimal feature selection.

Keywords: Software defect prediction, software metrics, machine learning, classification

1. Introduction

The software quality assurance process consists of several activities. Among them, predicting

defective modules in the initial stages is crucial [1] because the resources involved in debugging

them in the later stages of software development increase exponentially. Software testing and defect

fixing incur significant costs and require numerous resources, including money, manpower, and

time [2]. Researchers have extensively discussed this phenomenon over the past two decades.

Developing an efficient software defect prediction (SDP) model involves several factors [3], and

the most significant factor is selecting the optimal features.

mailto:talktomisbah.ali@gmail.com

ISSN: 2959-698X (Online) IJCIS V 2, I 4 (Oct-December 2023)

Misbah Ali IJCIS V 2, I 4, PP 56-73(Oct-December 2023)
 57

from historical data that play a significant role in effectively predicting defective modules [4,5].

Previous studies conducted by researchers demonstrated the significance of machine learning

techniques, including classification and feature selection, in increasing the accuracy of prediction

models [6,28,29].

SDP can improve the effectiveness of software quality assurance, resulting in high-quality

software while reducing the resources required for defect identification and fixing, such as

manpower, money, and time. Machine learning techniques [30] extract hidden features from

historical data and assist in predicting defects in the early stages of the software development life

cycle (SDLC) [7]. This study provides an analysis of the three most commonly used supervised

machine learning classification algorithms, namely decision tree (DT), support vector machine

(SVM), and naïve Bayes (NB), implemented on seven publicly available NASA defect datasets.

A genetic algorithm (GA) is applied as a preprocessing step to extract the most relevant features.

Supervised machine learning techniques [31,32] require labeled or pre-classified data, called

training data. These techniques generate rules by being trained on unseen data called test data.

This study incorporates seven clean NASA datasets: CM1, MC1, MC2, KC1, KC3, PC1, and PC2

[8, 9].

This study performed a detailed analysis of supervised classification techniques on

benchmark datasets distributed using 10-fold cross-validation. This study aimed to validate the

increased accuracy of models developed by researchers using new defect prediction techniques

based on GAs.

The remainder of this paper is organized as follows: Related work is discussed in Section 2.

The materials and methods used for the experiments in this study are discussed in Section 3. The

conclusions derived from the experiments are presented in Section 4. Finally, the results of this

study are discussed in Section 5.

2. Related Work

GA is recognized as one of the most robust optimization algorithms [19, 20]. Katoch et al.

presented a review emphasizing the importance of GAs in various contexts and suggested future

research focusing on fitness functions and hybrid algorithms [33]. Nguyen et al. experimented with

a feature selection technique using a genetic search and an encoder (E-D) model with LSTM to

forecast air pollution particulate matter PM2.5 [21]. The E-D model outperformed the other

methods and achieved an improved accuracy. MATLOOB [22] developed an SDP model using

ISSN: 2959-698X (Online) IJCIS V 2, I 4 (Oct-December 2023)

Misbah Ali IJCIS V 2, I 4, PP 56-73(Oct-December 2023)
 58

multilayer feed-forward neural networks and stacking as the ensemble technique. Various search

methods were implemented for feature selection, with best-first search, greedy stepwise search,

and genetic search achieving notable accuracy values on the NASA datasets.

Iqbal et al. analyzed twelve datasets obtained from NASA to compare the performance of several

classifiers, including the DT, NB, and K-Nearest neighbor (KNN). The study revealed that

accuracy and receiver operating characteristic (ROC) are not preferred performance measures

because of their inability to handle class-distribution imbalances. The results showed varying

accuracy values for the different classifiers: NB achieved 78.69, MLP 85.12, RBF 85.76, SVM

84.76, KNN 82.33, KStar 79.72, OneR 84.04, PART 85.48, DT 83.03, and RF 85.23 [10]. Cetiner

et al. analyzed ten classifiers using datasets from the PROMISE repository. The findings

highlighted that the random forest classifier demonstrated improved performance for the

PROMISE datasets [11]. Wang et al. proposed an SDP model using LASSO-SVM on NASA

datasets The identification of software defects during the Software development life cycle (SDLC)

is an essential step as it involves thorough testing of specific modules. Machine learning (ML)

techniques such as feature selection and classification have a significant impact on software defect

prediction by enabling the early detection of defects and facilitating the creation of reliable and

high-quality software.

[12]. They reduced the dimensionality of the dataset and optimized the SVM parameters

using cross validation, resulting in enhanced model performance. Aftab et al. conducted a

comparative analysis of four classifiers using a back-propagation strategy for SDP [13]. They

utilized a fuzzy layer and found that the Bayesian regularization classifier outperformed other

classifiers. Iqbal et al. developed a hybrid approach for feature classification in SDP [14]. They

conducted experiments on twelve NASA datasets, employing two individual approaches: one with

embedded feature selection and the other without. Both approaches explored bagging and boosting

ensemble strategies using a random forest as the base classifier, resulting in improved accuracy.

Balogun et al. explored the filter feature ranking (FFR) and various filter subset selection (FSS)

techniques using five NASA datasets [15]. Best-first search had a significant impact on the

prediction accuracy of FFR, whereas the feature selection strategy generated better overall results.

Kondo et al. investigated eight feature selection techniques by using supervised and unsupervised

learning models [16]. Feature selection improved the performance of both models, with neural

ISSN: 2959-698X (Online) IJCIS V 2, I 4 (Oct-December 2023)

Misbah Ali IJCIS V 2, I 4, PP 56-73(Oct-December 2023)
 59

network-based techniques demonstrating better results for unsupervised learning, and consistency-

and correlation-based methods working well for supervised learning. Xiaolong et al. explored 46

feature selection techniques with NB and DT algorithms using multiple public repositories and

datasets [7]. They concluded that choosing the best feature selection method depends upon the

selected classifier and dataset characteristics. Balogun et al. investigated rank-aggregation-based

multifilter feature-selection techniques using NB and DT algorithms on NASA datasets [17]. The

results indicated that combining filter rank techniques led to improved prediction accuracy for

defect prediction. Yucalar et al. combined multiple classifiers to enhance the prediction accuracy

of SDP systems [18]. The selected predictors achieved notable values regarding area under curve

(AUC) and F-measure.

This study aimed to comprehensively analyze three frequently employed classifiers: DT,

SVM, and NB. As a preprocessing step, a GA was implemented to extract the most appropriate

features for SDP.

3. Materials and Methods

This study performed a comparative analysis based on genetic algorithm using seven NASA

defect datasets for SDP. A genetic algorithm (GA) was employed for feature selection in the

preprocessing step. This algorithm mimics the process of natural selection to optimize the

selection of relevant features for a particular task. The genetic algorithm starts with a population

of potential feature subsets and iteratively evolves them through genetic operations like crossover

and mutation. Each subset's fitness is evaluated based on its performance in a predefined evaluation

metric. The fittest subsets are selected for reproduction, producing offspring with characteristics

inherited from their parents. This process continues for several generations, gradually improving

the feature subsets' performance. Ultimately, the genetic algorithm identifies the most suitable

feature subset for the given task [20, 21]. The optimal feature selection process using genetic

algorithm is shown in Figure 1.

ISSN: 2959-698X (Online) IJCIS V 2, I 4 (Oct-December 2023)

Misbah Ali IJCIS V 2, I 4, PP 56-73(Oct-December 2023)
 60

Figure 1. Feature selection using genetic algorithm

The extracted optimal features were integrated into three classification algorithms: DT, SVM,

and NB. Decision tree (DT) is a renowned classifier that works effectively by capturing complex

relationships between software metrics and defect occurrences. It provides interpretable rules for

identifying potential defects, allowing developers to prioritize and allocate resources accordingly

[23]. A support Vector Machine (SVM) is an effective classifier that separates defective and non-

defective software modules by mapping software metrics into higher-dimensional feature spaces.

SVM can create optimal decision boundaries, resulting in accurate defect classification and

prediction [2]. Naïve Bayes is a legacy algorithm that has demonstrated its effectiveness in

software defect prediction due to its simplicity and computational efficiency. It leverages the

probabilistic framework to estimate the likelihood of defects based on software metrics, making it

suitable for handling large datasets. Despite its assumption of feature independence, Naive Bayes

can still achieve reliable defect prediction results in many software engineering contexts [14].

The NASA datasets in this study contained historical software data with various features and

labeled classes. The datasets contained either Y or N as independent attributes, where Y

represented a defective instance, and N represented a non-defective instance. Seven clean NASA

ISSN: 2959-698X (Online) IJCIS V 2, I 4 (Oct-December 2023)

Misbah Ali IJCIS V 2, I 4, PP 56-73(Oct-December 2023)
 61

datasets were selected for this study: CM1, KC1, KC3, MC1, MC2, PC1, and PC2, as listed in

Table 1.

Based on the study of cleaned NASA datasets, two versions were generated: D’ and D’’. D’

contained inconsistent data, and D’’ contained consistent and unique instances [8]. This research

incorporates D’’ clean version of NASA datasets. Researchers have widely used these datasets

for defect prediction purposes [23, 24]. The cleaning standards are listed in Table 2. The process

flow for the defect prediction process is shown in Figure 2.

Figure 2. Process flow for software defect prediction

Experiments were performed using the WEKA tool, an extensively used data mining tool with

graphical user interface (GUI), created using the JAVA programming language at the University

of Waikato, New Zealand.

The description of the datasets is given in Table 1 as follows:

Table 1. NASA datasets-cleaned version

Dataset Language Modules Attributes GA-based attributes

CM1 C 327 38 13

KC1 C++ 1162 22 7

KC3 JAVA 194 40 7

MC1 C++ 1952 39 5

MC2 C 124 40 12

ISSN: 2959-698X (Online) IJCIS V 2, I 4 (Oct-December 2023)

Misbah Ali IJCIS V 2, I 4, PP 56-73(Oct-December 2023)
 62

PC1 C 679 38 14

PC2 C 722 37 14

The cleaning standards of the employed datasets are presented in Table 2.

Table 2. Cleaning standards [20], [36]

Case No Standard Type Description

Case 1

Identical Cases

Instances Containing

duplicate values for all

metrics along with class

label

Case 2

Inconsistent Cases
Instances that meet Case 1,

but class labels differ

Case 3

Cases with missing values
Instances containing one or

more missing values

Case 4

Cases with inconsistent

attribute values

Instances violating

referential integrity

constraint

Case 5

Cases with doubtful values
Instances violating

integrity constraint

4. Results and Discussion

This section presents the performance evaluation of the targeted classifiers that is analyzed

using various performance measures. Figure 2 shows the confusion matrix created to derive the

performance measures for analysis and evaluation. The confusion matrix contains the following

attributes.

TP – True positive: defective modules predicted as defective

FN – False negative: defective modules predicted as non-defective

FP – False positive: non-defective modules predicted as defective

TN – True negative: non-defective modules predicted as non-defective

ISSN: 2959-698X (Online) IJCIS V 2, I 4 (Oct-December 2023)

Misbah Ali IJCIS V 2, I 4, PP 56-73(Oct-December 2023)
 63

Figure 2. Confusion matrix

The following measures have been derived from the confusion matrix for evaluation purpose:

precision, accuracy, recall, Matthew's correlation coefficient (MCC), F-measure, and ROC have

been selected as performance parameters.

Precision: It denotes the ratio of true positives to the sum of true and false positives.

(𝑇𝑃)
𝑃𝑟𝑒𝑐𝑖𝑠𝑜𝑛 =

(𝑇𝑃) + (𝐹𝑃)

(1)

Accuracy: It presents the extent to which the prediction is accurate [13,34].

(𝑇𝑃) + (𝑇𝑁)

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
(𝑇𝑃) + (𝑇𝑁) + (𝐹𝑃) + (𝐹𝑁)

(2)

Recall: It expresses the ratio of true positive instances to the sum of the true positive and false

negative instances [13].

(𝑇𝑃)
𝑅𝑒𝑐𝑎𝑙𝑙 =

(𝑇𝑃) + (𝐹𝑁)
(3)

ISSN: 2959-698X (Online) IJCIS V 2, I 4 (Oct-December 2023)

Misbah Ali IJCIS V 2, I 4, PP 56-73(Oct-December 2023)
 64

MCC: It is the fraction of actual and predicted class after training the model for classification on

the datasets, and it ranges from -1 to +1. The obtained results that are closer to +1 produce higher

model accuracy, and the results that are near 0 or less than 0 do not show remarkable performance

[23].

𝑀𝐶𝐶

(𝑇𝑁) ∗ (𝑇𝑃) − (𝐹𝑃) ∗ (𝐹𝑁)
=

√(𝐹𝑃 + 𝑇𝑃) ∗ (𝐹𝑁 + 𝑇𝑃) ∗ (𝑇𝑁 + 𝐹𝑃) ∗ (𝑇𝑁 + 𝐹𝑁)

(4)

F-Measure: This is derived from precision and recall [13].

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑟𝑒𝑐𝑎𝑙𝑙 ∗ 2

𝐹 − 𝑀𝑒𝑎𝑠𝑢𝑟𝑒 =
(𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙)

(5)

ROC curves show the efficiency of a performance measure in distinguishing between faulty and

non-faulty instances, calculated using the true positive rate (TPr) and false positive rate (FPr) [26,

27].

1 + 𝑇𝑃𝑟 − 𝐹𝑃𝑟
𝑅𝑂𝐶 =

2

(6)

The tool used in this study, WEKA provides the facility to derive all the above-listed

performance measures. The results calculated using these performance measures are listed in

Tables 3 and 11. “?” denotes that the dataset has an imbalance class distribution issue; therefore,

few performance parameters are undefined. The most significant values obtained for these

parameters are indicated in bold.

Table 3 presents the results of the experiments performed using the CM1 dataset. NB produced

better results in terms of precision against the non-defective (N) class, whereas SVM provided

better recall and F-measure for the defective (Y) class.

ISSN: 2959-698X (Online) IJCIS V 2, I 4 (Oct-December 2023)

Misbah Ali IJCIS V 2, I 4, PP 56-73(Oct-December 2023)
 65

Table 3. CM1 Experimental Results

Classifier Class Precision Recall F-Measure

NB
Y 0.308 0.444 0.364

N 0.941 0.899 0.920

SVM
Y 0.908 1.000 0.952

N ? 0.000 ?

DT
Y 0.500 0.111 0.182

N 0.917 0.908 0.881

The experimental results obtained from the KC1 dataset are listed in Table 4. NB yielded

better results in terms of precision for the defective (Y) class, whereas SVM yielded better results

for the non-defective (N) class in terms of recall. DT generated good results for the F-measure

against the non-defective (N) class.

Table 4. KC1 Experimental results

Classifier Class Precision Recall F-Measure

NB
Y 0.801 0.371 0.420

N 0.485 0.865 0.832

SVM
Y 0.747 0.022 0.043

N 0.400 0.988 0.851

DT
Y 0.786 0.258 0.354

N 0.561 0.931 0.852

Table 5 presents the experimental results obtained using the KC3 dataset. NB provided better

results for the non-defective (N) class against the precision parameter. For the recall and F-

measure, SVM and DT provided good results for the non-defective (N) class.

Table 5. KC3 Experimental Results

Classifier Class Precision Recall F-Measure

NB Y 0.300 0.300 0.300

ISSN: 2959-698X (Online) IJCIS V 2, I 4 (Oct-December 2023)

Misbah Ali IJCIS V 2, I 4, PP 56-73(Oct-December 2023)
 66

 N 0.854 0.854 0.854

SVM
Y ? 0.000 ?

N 0.828 1.000 0.906

DT
Y ? 0.000 ?

N 0.828 1.000 0.906

Table 6 presents the experimental results obtained using the MC1 dataset.

Both SVM and DT produced better precision, recall, and F-measure results for the non-

defective (N) class.

Table 6. MC1 Experimental Results

Classifier Class Precision Recall F-Measure

NB
Y 0.143 0.286 0.190

N 0.982 0.958 0.970

SVM
Y ? 0.000 ?

N 0.976 1.000 0.988

DT
Y ? 0.000 ?

N 0.976 1.000 0.988

Table 7 presents the experimental results obtained using the MC2 dataset. NB produced good

results in terms of precision for the defective (Y) class, whereas it produced good results for the f-

f-measure against the non-defective (N) class. However, SVM produced good results for the

non- defective (N) class regarding recall.

Table 7. MC2 Experimental Results

Classifier Class Precision Recall F-Measure

NB
Y 0.833 0.385 0.526

N 0.742 0.958 0.836

SVM
Y ? 0.000 ?

N 0.649 1.000 0.787

DT Y 0.500 0.154 0.235

ISSN: 2959-698X (Online) IJCIS V 2, I 4 (Oct-December 2023)

Misbah Ali IJCIS V 2, I 4, PP 56-73(Oct-December 2023)
 67

N 0.667 0.917 0.772

Table 8 lists the experimental results obtained on the PC1 dataset. NB obtained good results

in terms of precision for the non-defective (N) class. SVM produced good results in terms of recall

for the non-defective (N) class, whereas the DT generated promising results in terms of the f-

measure for the non-defective (N) class.

Table 8. PC1 Experimental results

Classifier Class Precision Recall F-Measure

NB
Y 0.250 0.700 0.368

N 0.983 0.892 0.935

SVM
Y ? 0.000 ?

N 0.951 1.000 0.975

DT
Y 0.667 0.400 0.500

N 0.970 0.990 0.980

The experimental results obtained on the PC2 dataset are presented in Table 9. The SVM and

DT showed good precision, recall, and F-measure results for the non-defective (N) class.

Table 9. PC2 Experimental Results

Classifier Class Precision Recall F-Measure

NB
Y 0.000 0.000 0.000

N 0.976 0.953 0.964

SVM
Y 0.000 ? 0.000

N 0.977 1.000 0.988

DT
Y ? 0.000 ?

N 0.977 1.000 0.988

The models' performances in terms of accuracy are listed in Table 10. SVM produced

achieved higher accuracy on four datasets: KC3, MC1, MC2, and PC2. DT

ISSN: 2959-698X (Online) IJCIS V 2, I 4 (Oct-December 2023)

Misbah Ali IJCIS V 2, I 4, PP 56-73(Oct-December 2023)
 68

produced good results on five datasets: KC3, MC1, MC2, PC1, and PC2. On the other hand, NB

did not achieve high accuracy for any of the seven datasets. The results obtained regarding MCC

and AU-ROC are listed in Tables 11 and 12, respectively. This is a sensitive evaluation measure,

as it does not produce results for many datasets due to class imbalance problems. NB produced

good results on two datasets, MC2 and PC1, whereas DT did not achieve high results on any of

the seven datasets. SVM also did not achieve satisfactory results on any of the datasets. These

results indicate that all performance measures are critical when a class- imbalance issue exists, as

they do not produce any results while implementing the classification algorithms. The AU-ROC

area and accuracy were not influenced by the class imbalance issue in the datasets, making them

non-critical of the problem. Therefore, researchers should use other evaluation measures, such as

recall and F-measure, which respond to class imbalance issues. MCC is a highly critical measure

because it responds the most to the class imbalance problem. Although SVM and DT perform

well in binary classification, the classifier's results are tool dependent. The tool used in this study

encountered challenges while processing specific NASA datasets, particularly in the case of

Support Vector Machine (SVM) and Decision Tree (DT) algorithms. The issue stemmed from a

class imbalance within these datasets, leading to non-computed results. As a result, the outcomes

for these scenarios are undefined and have been denoted as “?” in our analysis.

These techniques were discussed in [25] to address class-imbalance issues. This study

incorporated the cleaned version D’’ of the NASA datasets, and consequently, no attention was

given to the class-imbalance issue.

Table 10. Performance in terms of accuracy

Dataset NB SVM DT

CM1 85.7143 90.8163 90.8163

KC1 73.9255 74.212 75.9312

KC3 75.8621 82.7586 82.7586

MC1 94.198 97.6109 97.6109

MC2 75.6757 64.8649 64.8649

PC1 88.2353 95.098 96.0784

ISSN: 2959-698X (Online) IJCIS V 2, I 4 (Oct-December 2023)

Misbah Ali IJCIS V 2, I 4, PP 56-73(Oct-December 2023)
 69

PC2 93.0876 97.6959 97.6959

Table 11. Performance in terms of MCC

Dataset NB SVM DT

CM1 0.292 ? 0.204

KC1 0.260 0.040 0.256

KC3 0.154 ? ?

MC1 0.175 ? ?

MC2 0.444 ? 0.108

PC1 0.498 ? 0.371

PC2 -0.034 ? ?

Table 12. Performance in terms of AU-ROC

Dataset NB SVM DT

CM1 0.720 0.500 0.500

KC1 0.693 0.505 0.595

KC3 0.769 0.500 0.619

MC1 0.832 0.500 0.500

MC2 0.833 0.500 0.535

PC1 0.930 0.500 0.873

PC2 0.779 0.500 0.500

5. Conclusions

Over the past twenty years, one of the emergent fields in software engineering has been SDP

using classification algorithms provided by machine learning. Using SDP, software with better-

quality can be delivered using fewer resources, including money, manpower, and time. This

study performed a GA-based detailed performance analysis on seven cleaned versions of NASA

defect datasets. The application of GA for attribute selection in SDP has demonstrated

remarkable effectiveness and has made significant contributions to the field. This study aimed to

analyze the efficiency of classification algorithms by selecting the most relevant features, and the

findings highlight that the effectiveness of the GA in achieving this objective is significant. Three

ISSN: 2959-698X (Online) IJCIS V 2, I 4 (Oct-December 2023)

Misbah Ali IJCIS V 2, I 4, PP 56-73(Oct-December 2023)
 70

Classification algorithms were implemented: DT, NB, and SVM. The effectiveness of the

classifiers was analyzed using precision, accuracy, recall, MCC, F-measure, and ROC. The results

indicate that the AU-ROC area and accuracy did not respond to the class imbalance issue and,

therefore, cannot be considered as efficient performance measures. However, MCC, precision, F-

Measure, and recall respond to the class imbalance problem. This study serves as a foundational

benchmark for researchers, as any new technique proposed for SDP can be compared and validated

with the technique used in this research. In the future, the scope of this research can be enhanced

by addressing the class imbalance issue and analyzing the performance of classification algorithms

using ensemble learning techniques.

References

1. Shafiq, M., Alghamedy, F. H., Jamal, N., Kamal, T., Daradkeh, Y. I., & Shabaz, M. (2023).

Scientific programming using optimized machine learning techniques for software fault

prediction to improve software quality. IET Software, sfw2.12091.

2. Wang, K., Liu, L., Yuan, C., & Wang, Z. (2021). Software defect prediction model based

on LASSO–SVM. Neural Computing and Applications, 33(14), 8249–8259.

3. Zhu, K., Ying, S., Zhang, N., & Zhu, D. (2021). Software defect prediction based on

enhanced metaheuristic feature selection optimization and a hybrid deep neural network.

Journal of Systems and Software, 180, 111026.

4. S. Moustafa, M. Y. ElNainay, N. El Makky, and M. S. Abougabal, ―Software bug

prediction using weighted majority voting techniques, Alexandria Eng. J. 2018, vol. 57,

no. 4, pp. 2763–2774.

5. Singh, S., & Haider, T. U. (2022). Selection of best feature reduction method for module-

based software defect prediction. Journal of Physics: Conference Series, 2273(1), 012002.

6. Yang, Z., Jin, C., Zhang, Y., Wang, J., Yuan, B., & Li, H. (2022). Software Defect

Prediction: An Ensemble Learning Approach. Journal of Physics: Conference Series,

2171(1), 012008.

7. Xiaolong, X., Wen, C., & Xinheng, W. (2021). RFC: A feature selection algorithm for

software defect prediction. Journal of Systems Engineering and Electronics, 32(2), 389–

398.

ISSN: 2959-698X (Online) IJCIS V 2, I 4 (Oct-December 2023)

Misbah Ali IJCIS V 2, I 4, PP 56-73(Oct-December 2023)
 71

8. M. Shepperd, Q. Song, Z. Sun, and C. Mair, ―Data quality: Some comments on the

NASA software defect datasets, ‖ IEEE Trans. Softw. Eng. 2013, vol. 39, no. 9, pp. 1208–

1215.

9. ―NASA – Software Defect Datasets [Online]. Available: https://nasa

softwaredefectdatasets.wikispaces.com. [Accessed: 01-July-2023].

10. Iqbal, A., Aftab, S., Ali, U., Nawaz, Z., Sana, L., Ahmad, M., & Husen, A. (2019).

Performance Analysis of Machine Learning Techniques on Software Defect Prediction

using NASA Datasets. International Journal of Advanced Computer Science and

Applications, 10(5).

11. Cetiner, M., & Sahingoz, O. K. (2020). A Comparative Analysis for Machine Learning

based Software Defect Prediction Systems. 2020 11th International Conference on

Computing, Communication and Networking Technologies (ICCCNT), 1-7.

12. Rath, S. K., Sahu, M., Das, S. P., Bisoy, S. K., & Sain, M. (2022). A Comparative Analysis

of SVM and ELM Classification on Software Reliability Prediction Model. Electronics,

11(17), 2707.

13. Sh. Daoud, M., Aftab, S., Ahmad, M., Adnan Khan, M., Iqbal, A., Abbas, S., Iqbal, M.,

& Ihnaini, B. (2022). Machine Learning Empowered Software Defect Prediction System.

Intelligent Automation & Soft Computing, 31(2), 1287–1300.

14. Iqbal, A., Aftab, S., Ullah, I., Salman Bashir, M., & Anwaar Saeed, M. (2019). A Feature

Selection based Ensemble Classification Framework for Software Defect Prediction.

International Journal of Modern Education and Computer Science, 11(9), 54-64.

15. Balogun, A. O., Basri, S., Abdulkadir, S. J., & Hashim, A. S. (2019). Performance

Analysis of Feature Selection Methods in Software Defect Prediction: A Search Method

Approach. Applied Sciences, 9(13), 2764.

16. Kondo, M., Bezemer, C.-P., Kamei, Y., Hassan, A. E., & Mizuno, O. (2019). The impact

of feature reduction techniques on defect prediction models. Empirical Software

Engineering, 24(4), 1925-1963.

17. Balogun, A. O., Basri, S., Mahamad, S., Abdulkadir, S. J., Capretz, L. F., Imam, A. A.,

Almomani, M. A., Adeyemo, V. E., & Kumar, G. (2021). Empirical Analysis of Rank

ISSN: 2959-698X (Online) IJCIS V 2, I 4 (Oct-December 2023)

Misbah Ali IJCIS V 2, I 4, PP 56-73(Oct-December 2023)
 72

Aggregation-Based Multi-Filter Feature Selection Methods in Software Defect Prediction.

Electronics, 10(2), 179.

18. Yucalar, F., Ozcift, A., Borandag, E., & Kilinc, D. (2020). Multiple-classifiers in software

quality engineering: Combining predictors to improve software fault prediction ability.

Engineering Science and Technology, an International Journal, 23(4), 938–950.

19. Nguyen, M. H., Le Nguyen, P., Nguyen, K., Le, V. A., Nguyen, T.-H., & Ji, Y. (2021).

PM2.5 Prediction Using Genetic Algorithm-Based Feature Selection and Encoder-

Decoder Model. IEEE Access, 9, 57338–57350.

20. Hamdia, K. M., Zhuang, X., & Rabczuk, T. (2021). An efficient optimization approach

for designing machine learning models based on genetic algorithm. Neural Computing and

Applications, 33(6), 1923-1933.

21. Katoch, S., Chauhan, S. S., & Kumar, V. (2021). A review on genetic algorithm: Past,

present, and future. Multimedia Tools and Applications, 80(5), 8091-8126.

22. Matloob, F. (2020). Software defect prediction model using multi-layer feed forward

neural networks [Thesis, Virtual University of Pakistan].

https://vspace.vu.edu.pk/details.aspx?id=342.

23. Alazba, A., & Aljamaan, H. (2022). Software Defect Prediction Using Stacking

Generalization of Optimized Tree-Based Ensembles. Applied Sciences, 12(9), 4577.

https://doi.org/10.3390/app12094577

24. Alkhasawneh, M. S. (2022). Software Defect Prediction through Neural Network and

Feature Selections. Applied Computational Intelligence and Soft Computing, 2022, 1–16.

https://doi.org/10.1155/2022/2581832

25. Liu, Y., Zhang, W., Qin, G., & Zhao, J. (2022). A comparative study on the effect of data

imbalance on software defect prediction. Procedia Computer Science, 214, 1603-1616.

https://doi.org/10.1016/j.procs.2022.11.349

26. Liu, W., Wang, B., & Wang, W. (2021). Deep Learning Software Defect Prediction

Methods for Cloud Environments Research. Scientific Programming, 2021, 1-11.

https://doi.org/10.1155/2021/2323100

27. Pan, C., Lu, M., & Xu, B. (2021). An Empirical Study on Software Defect Prediction

Using CodeBERT Model. Applied Sciences, 11(11), 4793.

https://doi.org/10.3390/app11114793

28. Ahmed, F., Asif, M. and Saleem, M., 2023. Identification and Prediction of Brain Tumor Using

https://vspace.vu.edu.pk/details.aspx?id=342
https://doi.org/10.1155/2021/2323100
https://doi.org/10.3390/app11114793

ISSN: 2959-698X (Online) IJCIS V 2, I 4 (Oct-December 2023)

Misbah Ali IJCIS V 2, I 4, PP 56-73(Oct-December 2023)
 73

VGG-16 Empowered with Explainable Artificial Intelligence. International Journal of

Computational and Innovative Sciences, 2(2), pp.24-33.

29. Saleem, M., Khan, M.S., Issa, G.F., Khadim, A., Asif, M., Akram, A.S. and Nair, H.K., 2023,

March. Smart Spaces: Occupancy Detection using Adaptive Back-Propagation Neural Network.

In 2023 International Conference on Business Analytics for Technology and Security (ICBATS)

(pp. 1-6). IEEE.

30. Athar, A., Asif, R.N., Saleem, M., Munir, S., Al Nasar, M.R. and Momani, A.M., 2023, March.

Improving Pneumonia Detection in chest X-rays using Transfer Learning Approach (AlexNet)

and Adversarial Training. In 2023 International Conference on Business Analytics for

Technology and Security (ICBATS) (pp. 1-7). IEEE.

31. Abualkishik, A., Saleem, M., Farooq, U., Asif, M., Hassan, M. and Malik, J.A., 2023, March.

Genetic Algorithm Based Adaptive FSO Communication Link. In 2023 International Conference

on Business Analytics for Technology and Security (ICBATS) (pp. 1-4). IEEE.

32. Sajjad, G., Khan, M.B.S., Ghazal, T.M., Saleem, M., Khan, M.F. and Wannous, M., 2023,

March. An Early Diagnosis of Brain Tumor Using Fused Transfer Learning. In 2023

International Conference on Business Analytics for Technology and Security (ICBATS) (pp. 1-

5). IEEE.

