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Abstract: Software quality assurance is a crucial activity during the initial stages of the software 

development life cycle. Various frameworks have been developed over the past two decades to 

ensure software quality. By predicting defective modules at the initial stages, the resources 

available for software development can be efficiently used to ensure the timely delivery of good-

quality software. Numerous software defect prediction models have been proposed and developed 

using supervised and unsupervised machine learning methodologies and integrating statistical 

methodologies. Software metrics contain hidden patterns that can be extracted and utilized to 

identify defective modules using a machine-learning approach. This study applies a genetic 

algorithm (GA) to select relevant features vital in predicting defective modules and explores 

supervised classification techniques by incorporating seven widely used NASA datasets. The 

three most used classification techniques, decision tree, support  vector machine, and naïve 

Bayes, were selected for the analysis. Precision, accuracy, recall, Matthew’s correlation 

coefficient, F-measure, and receiver operating characteristics were selected as the performance 

parameters. The results of this study can serve as a baseline for comparing and verifying the 

results of new models that implement GA for optimal feature selection. 

Keywords: Software defect prediction, software metrics, machine learning, classification 

 
1. Introduction 

The software quality assurance process consists of several activities. Among them, predicting 

defective modules in the initial stages is crucial [1] because the resources involved in debugging 

them in the later stages of software development increase exponentially. Software testing and defect 

fixing incur significant costs and require numerous resources, including money, manpower, and 

time [2]. Researchers have extensively discussed this phenomenon over the past two decades. 

Developing an efficient software defect prediction (SDP) model involves several factors [3], and 

the most significant factor is selecting the optimal features. 
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from historical data that play a significant role in effectively predicting defective modules [4,5].  

Previous studies conducted by researchers demonstrated the significance of machine learning 

techniques, including classification and feature selection, in increasing the accuracy of prediction 

models [6,28,29]. 

SDP can improve the effectiveness of software quality assurance, resulting in high-quality 

software while reducing the resources required for defect identification and fixing, such as 

manpower, money, and time. Machine learning techniques [30] extract hidden features from 

historical data and assist in predicting defects in the early stages of the software development life 

cycle (SDLC) [7]. This study provides an analysis of the three most commonly used supervised 

machine learning classification algorithms, namely decision tree (DT), support vector machine 

(SVM), and naïve Bayes (NB), implemented on seven publicly available NASA defect datasets. 

A genetic algorithm (GA) is applied as a preprocessing step to extract the most relevant features. 

Supervised machine learning techniques [31,32] require labeled or pre-classified data, called 

training data. These techniques generate rules by being trained on unseen data called test data. 

This study incorporates seven clean NASA datasets: CM1, MC1, MC2, KC1, KC3, PC1, and PC2 

[8, 9]. 

This study performed a detailed analysis of supervised classification techniques on 

benchmark datasets distributed using 10-fold cross-validation. This study aimed to validate the 

increased accuracy of models developed by researchers using new defect prediction techniques  

based on GAs. 

The remainder of this paper is organized as follows: Related work is discussed in Section 2.  

The materials and methods used for the experiments in this study are discussed in Section 3. The 

conclusions derived from the experiments are presented in Section 4. Finally, the results of this  

study are discussed in Section 5. 

 

2. Related Work 

GA is recognized as one of the most robust optimization algorithms [19, 20]. Katoch et al. 

presented a review emphasizing the importance of GAs in various contexts and suggested future 

research focusing on fitness functions and hybrid algorithms [33]. Nguyen et al. experimented with 

a feature selection technique using a genetic search and an encoder (E-D) model with LSTM to 

forecast air pollution particulate matter PM2.5 [21]. The E-D model outperformed the other 

methods and achieved an improved accuracy. MATLOOB [22] developed an SDP model using 
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multilayer feed-forward neural networks and stacking as the ensemble technique. Various search 

methods were implemented for feature selection, with best-first search, greedy stepwise search, 

and genetic search achieving notable accuracy values on the NASA datasets. 

 

Iqbal et al. analyzed twelve datasets obtained from NASA to compare the performance of several  

classifiers, including the DT, NB, and K-Nearest neighbor (KNN). The study revealed that 

accuracy and receiver operating characteristic (ROC) are not preferred performance measures 

because of their inability to handle class-distribution imbalances. The results showed varying 

accuracy values for the different classifiers: NB achieved 78.69, MLP 85.12, RBF 85.76, SVM 

84.76, KNN 82.33, KStar 79.72, OneR 84.04, PART 85.48, DT 83.03, and RF 85.23 [10]. Cetiner 

et al. analyzed ten classifiers using datasets from the PROMISE repository. The findings 

highlighted that the random forest classifier demonstrated improved performance for the 

PROMISE datasets [11]. Wang et al. proposed an SDP model using LASSO-SVM on NASA 

datasets The identification of software defects during the Software development life cycle (SDLC) 

is an essential step as it involves thorough testing of specific modules. Machine learning (ML)  

techniques such as feature selection and classification have a significant impact on software defect 

prediction by enabling the early detection of defects and facilitating the creation of reliable and 

high-quality software. 

 

[12]. They reduced the dimensionality of the dataset and optimized the SVM parameters 

using cross validation, resulting in enhanced model performance. Aftab et al. conducted a 

comparative analysis of four classifiers using a back-propagation strategy for SDP [13]. They 

utilized a fuzzy layer and found that the Bayesian regularization classifier outperformed other  

classifiers. Iqbal et al. developed a hybrid approach for feature classification in SDP [14]. They 

conducted experiments on twelve NASA datasets, employing two individual approaches: one with 

embedded feature selection and the other without. Both approaches explored bagging and boosting 

ensemble strategies using a random forest as the base classifier, resulting in improved accuracy.  

Balogun et al. explored the filter feature ranking (FFR) and various filter subset selection (FSS)  

techniques using five NASA datasets [15]. Best-first search had a significant impact on the 

prediction accuracy of FFR, whereas the feature selection strategy generated better overall results. 

Kondo et al. investigated eight feature selection techniques by using supervised and unsupervised 

learning models [16]. Feature selection improved the performance of both models, with neural 
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network-based techniques demonstrating better results for unsupervised learning, and consistency- 

and correlation-based methods working well for supervised learning. Xiaolong et al. explored 46 

feature selection techniques with NB and DT algorithms using multiple public repositories and 

datasets [7]. They concluded that choosing the best feature selection method depends upon the 

selected classifier and dataset characteristics. Balogun et al. investigated rank-aggregation-based 

multifilter feature-selection techniques using NB and DT algorithms on NASA datasets [17]. The 

results indicated that combining filter rank techniques led to improved prediction accuracy for  

defect prediction. Yucalar et al. combined multiple classifiers to enhance the prediction accuracy  

of SDP systems [18]. The selected predictors achieved notable values regarding area under curve 

(AUC) and F-measure. 

This study aimed to comprehensively analyze three frequently employed classifiers: DT, 

SVM, and NB. As a preprocessing step, a GA was implemented to extract the most appropriate  

features for SDP. 

 

3. Materials and Methods 

This study performed a comparative analysis based on genetic algorithm using seven NASA 

defect datasets for SDP. A genetic algorithm (GA) was employed for feature selection in  the 

preprocessing step. This algorithm mimics the process of natural selection to optimize the  

selection of relevant features for a particular task. The genetic algorithm starts with a population 

of potential feature subsets and iteratively evolves them through genetic operations like crossover 

and mutation. Each subset's fitness is evaluated based on its performance in a predefined evaluation 

metric. The fittest subsets are selected for reproduction, producing offspring with characteristics  

inherited from their parents. This process continues for several generations, gradually improving 

the feature subsets' performance. Ultimately, the genetic algorithm identifies the most suitable  

feature subset for the given task [20, 21]. The optimal feature selection process using genetic  

algorithm is shown in Figure 1. 
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Figure 1. Feature selection using genetic algorithm 

 
 

The extracted optimal features were integrated into three classification algorithms: DT, SVM, 

and NB. Decision tree (DT) is a renowned classifier that works effectively by capturing complex  

relationships between software metrics and defect occurrences. It provides interpretable rules for  

identifying potential defects, allowing developers to prioritize and allocate resources accordingly 

[23]. A support Vector Machine (SVM) is an effective classifier that separates defective and non-

defective software modules by mapping software metrics into higher-dimensional feature spaces. 

SVM can create optimal decision boundaries, resulting in accurate defect classification and 

prediction [2]. Naïve Bayes is a legacy algorithm that has demonstrated its effectiveness in  

software defect prediction due to its simplicity and computational efficiency. It leverages the  

probabilistic framework to estimate the likelihood of defects based on software metrics, making it 

suitable for handling large datasets. Despite its assumption of feature independence, Naive Bayes  

can still achieve reliable defect prediction results in many software engineering contexts [14]. 

The NASA datasets in this study contained historical software data with various features and 

labeled classes. The datasets contained either Y or N as independent attributes, where  Y 

represented a defective instance, and N represented a non-defective instance. Seven clean NASA 
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datasets were selected for this study: CM1, KC1, KC3, MC1, MC2, PC1, and PC2, as listed in 

Table 1. 

Based on the study of cleaned NASA datasets, two versions were generated: D’ and D’’. D’ 

contained inconsistent data, and D’’ contained consistent and unique instances [8]. This research 

incorporates D’’ clean version of NASA datasets. Researchers have widely used these datasets 

for defect prediction purposes [23, 24]. The cleaning standards are listed in Table 2. The process 

flow for the defect prediction process is shown in Figure 2. 

 
 

 
 

Figure 2. Process flow for software defect prediction 

 
 

Experiments were performed using the WEKA tool, an extensively used data mining tool with 

graphical user interface (GUI), created using the JAVA programming language at the University  

of Waikato, New Zealand. 

The description of the datasets is given in Table 1 as follows: 

Table 1. NASA datasets-cleaned version 
 

Dataset Language Modules Attributes GA-based attributes 

CM1 C 327 38 13 

KC1 C++ 1162 22 7 

KC3 JAVA 194 40 7 

MC1 C++ 1952 39 5 

MC2 C 124 40 12 
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PC1 C 679 38 14 

PC2 C 722 37 14 

 

The cleaning standards of the employed datasets are presented in Table 2. 

Table 2. Cleaning standards [20], [36] 
 

Case No Standard Type Description 

 

 
Case 1 

 

 
Identical Cases 

Instances Containing 

duplicate values for all 

metrics along with class 

label 

 

Case 2 

 

Inconsistent Cases 
Instances that meet Case 1, 

but class labels differ 

 

Case 3 

 

Cases with missing values 
Instances containing one or 

more missing values 

 

Case 4 

 

Cases with inconsistent 

attribute values 

Instances violating 

referential integrity 

constraint 

 

Case 5 

 

Cases with doubtful values 
Instances violating 

integrity constraint 

 

4. Results and Discussion 

This section presents the performance evaluation of the targeted classifiers that is analyzed 

using various performance measures. Figure 2 shows the confusion matrix created to derive the 

performance measures for analysis and evaluation. The confusion matrix contains the following 

attributes. 

TP – True positive: defective modules predicted as defective 

FN – False negative: defective modules predicted as non-defective 

FP – False positive: non-defective modules predicted as defective 

TN – True negative: non-defective modules predicted as non-defective 
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Figure 2. Confusion matrix 

 
 

The following measures have been derived from the confusion matrix for evaluation purpose: 

precision, accuracy, recall, Matthew's correlation coefficient (MCC), F-measure, and ROC have 

been selected as performance parameters. 

Precision: It denotes the ratio of true positives to the sum of true and false positives. 
 

(𝑇𝑃) 
𝑃𝑟𝑒𝑐𝑖𝑠𝑜𝑛 = 

(𝑇𝑃) + (𝐹𝑃) 

(1) 

 

 

 
Accuracy: It presents the extent to which the prediction is accurate [13,34]. 

 
 
 

 
(𝑇𝑃) + (𝑇𝑁) 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 
(𝑇𝑃) + (𝑇𝑁) + (𝐹𝑃) + (𝐹𝑁) 

(2) 

 
 
 
 

Recall: It expresses the ratio of true positive instances to the sum of the true positive and false 

negative instances [13]. 

 
 

(𝑇𝑃) 
𝑅𝑒𝑐𝑎𝑙𝑙 = 

(𝑇𝑃) + (𝐹𝑁) 
(3) 
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MCC: It is the fraction of actual and predicted class after training the model for classification on 

the datasets, and it ranges from -1 to +1. The obtained results that are closer to +1 produce higher 

model accuracy, and the results that are near 0 or less than 0 do not show remarkable performance 

[23]. 

 
 

𝑀𝐶𝐶 

(𝑇𝑁) ∗ (𝑇𝑃) − (𝐹𝑃) ∗ (𝐹𝑁) 
=    

√(𝐹𝑃 + 𝑇𝑃) ∗ (𝐹𝑁 + 𝑇𝑃) ∗ (𝑇𝑁 + 𝐹𝑃) ∗ (𝑇𝑁 + 𝐹𝑁) 

(4) 

 
 
 
 

F-Measure: This is derived from precision and recall [13]. 
 

 
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑟𝑒𝑐𝑎𝑙𝑙 ∗ 2 

𝐹 − 𝑀𝑒𝑎𝑠𝑢𝑟𝑒 = 
(𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙 ) 

(5) 

 
 
 
 

ROC curves show the efficiency of a performance measure in distinguishing between faulty and 

non-faulty instances, calculated using the true positive rate (TPr) and false positive rate (FPr) [26, 

27]. 

 
 

1 + 𝑇𝑃𝑟 − 𝐹𝑃𝑟 
𝑅𝑂𝐶 = 

2 

(6) 

 

 

The tool used in this study, WEKA provides the facility to derive all the above-listed 

performance measures. The results calculated using these performance measures are listed in  

Tables 3 and 11. “?” denotes that the dataset has an imbalance class distribution issue; therefore, 

few performance parameters are undefined. The most significant values obtained for these 

parameters are indicated in bold. 

Table 3 presents the results of the experiments performed using the CM1 dataset. NB produced 

better results in terms of precision against the non-defective (N) class, whereas SVM provided 

better recall and F-measure for the defective (Y) class. 



ISSN: 2959-698X (Online)                                                                         IJCIS V 2, I 4 (Oct-December 2023) 
 

Misbah Ali IJCIS V 2, I 4, PP 56-73(Oct-December 2023) 
 65 

Table 3. CM1 Experimental Results 
 

Classifier Class Precision Recall F-Measure 

NB 
Y 0.308 0.444 0.364 

N 0.941 0.899 0.920 

 

SVM 
Y 0.908 1.000 0.952 

N ? 0.000 ? 

 

DT 
Y 0.500 0.111 0.182 

N 0.917 0.908 0.881 

 
The experimental results obtained from the KC1 dataset are listed in Table 4. NB yielded 

better results in terms of precision for the defective (Y) class, whereas SVM yielded better results 

for the non-defective (N) class in terms of recall. DT generated good results for the F-measure 

against the non-defective (N) class. 

 
Table 4. KC1 Experimental results 

 

Classifier Class Precision Recall F-Measure 

NB 
Y 0.801 0.371 0.420 

N 0.485 0.865 0.832 

 

SVM 
Y 0.747 0.022 0.043 

N 0.400 0.988 0.851 

 

DT 
Y 0.786 0.258 0.354 

N 0.561 0.931 0.852 

 
Table 5 presents the experimental results obtained using the KC3 dataset. NB provided better 

results for the non-defective (N) class against the precision parameter. For the recall and F- 

measure, SVM and DT provided good results for the non-defective (N) class. 

 
Table 5. KC3 Experimental Results 

 

Classifier Class Precision Recall F-Measure 

NB Y 0.300 0.300 0.300 
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 N 0.854 0.854 0.854 

 

SVM 
Y ? 0.000 ? 

N 0.828 1.000 0.906 

 

DT 
Y ? 0.000 ? 

N 0.828 1.000 0.906 

 

Table 6 presents the experimental results obtained using the MC1 dataset. 

Both SVM and DT produced better precision, recall, and F-measure results for the non-

defective (N) class. 

 
Table 6. MC1 Experimental Results 

 

Classifier Class Precision Recall F-Measure 

NB 
Y 0.143 0.286 0.190 

N 0.982 0.958 0.970 

 

SVM 
Y ? 0.000 ? 

N 0.976 1.000 0.988 

 

DT 
Y ? 0.000 ? 

N 0.976 1.000 0.988 

 
Table 7 presents the experimental results obtained using the MC2 dataset. NB produced good 

results in terms of precision for the defective (Y) class, whereas it produced good results for the f- 

f-measure against the non-defective (N) class. However, SVM produced good results for the 

non- defective (N) class regarding recall. 

 
Table 7. MC2 Experimental Results 

 

Classifier Class Precision Recall F-Measure 

NB 
Y 0.833 0.385 0.526 

N 0.742 0.958 0.836 

 

SVM 
Y ? 0.000 ? 

N 0.649 1.000 0.787 

DT Y 0.500 0.154 0.235 
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N 0.667 0.917 0.772 

 

Table 8 lists the experimental results obtained on the PC1 dataset. NB obtained good results  

in terms of precision for the non-defective (N) class. SVM produced good results in terms of recall 

for the non-defective (N) class, whereas the DT generated promising results in terms of the f-

measure for the non-defective (N) class. 

 
Table 8. PC1 Experimental results 

 

Classifier Class Precision Recall F-Measure 

NB 
Y 0.250 0.700 0.368 

N 0.983 0.892 0.935 

 

SVM 
Y ? 0.000 ? 

N 0.951 1.000 0.975 

 

DT 
Y 0.667 0.400 0.500 

N 0.970 0.990 0.980 

 
The experimental results obtained on the PC2 dataset are presented in Table 9. The SVM and 

DT showed good precision, recall, and F-measure results for the non-defective (N) class. 

 
Table 9. PC2 Experimental Results 

 

Classifier Class Precision Recall F-Measure 

NB 
Y 0.000 0.000 0.000 

N 0.976 0.953 0.964 

 

SVM 
Y 0.000 ? 0.000 

N 0.977 1.000 0.988 

 

DT 
Y ? 0.000 ? 

N 0.977 1.000 0.988 

 
The models' performances in terms of accuracy are listed in Table 10. SVM produced 

achieved higher accuracy on four datasets: KC3, MC1, MC2, and PC2. DT 
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produced good results on five datasets: KC3, MC1, MC2, PC1, and PC2. On the other hand, NB 

did not achieve high accuracy for any of the seven datasets. The results obtained regarding MCC 

and AU-ROC are listed in Tables 11 and 12, respectively. This is a sensitive evaluation measure, 

as it does not produce results for many datasets due to class imbalance problems. NB produced 

good results on two datasets, MC2 and PC1, whereas DT did not achieve high results on any of 

the seven datasets. SVM also did not achieve satisfactory results on any of  the datasets. These 

results indicate that all performance measures are critical when a class- imbalance issue exists, as 

they do not produce any results while implementing the classification algorithms. The AU-ROC 

area and accuracy were not influenced by the class imbalance issue in the datasets, making them 

non-critical of the problem. Therefore, researchers should use other evaluation measures, such as 

recall and F-measure, which respond to class imbalance issues. MCC is a highly critical measure 

because it responds the most to the class imbalance problem. Although SVM and DT perform 

well in binary classification, the classifier's results are tool dependent. The tool used in this study 

encountered challenges while processing specific NASA datasets, particularly in the case of 

Support Vector Machine (SVM) and Decision Tree (DT) algorithms. The issue stemmed from a 

class imbalance within these datasets, leading to non-computed results. As a result, the outcomes 

for these scenarios are undefined and have been denoted as “?” in our analysis. 

 
These techniques were discussed in [25] to address class-imbalance issues. This study 

incorporated the cleaned version D’’ of the NASA datasets, and consequently, no attention was 

given to the class-imbalance issue. 

 
Table 10. Performance in terms of accuracy 

 

Dataset NB SVM DT 

CM1 85.7143 90.8163 90.8163 

KC1 73.9255 74.212 75.9312 

KC3 75.8621 82.7586 82.7586 

MC1 94.198 97.6109 97.6109 

MC2 75.6757 64.8649 64.8649 

PC1 88.2353 95.098 96.0784 



ISSN: 2959-698X (Online)                                                                         IJCIS V 2, I 4 (Oct-December 2023) 
 

Misbah Ali IJCIS V 2, I 4, PP 56-73(Oct-December 2023) 
 69 

PC2 93.0876 97.6959 97.6959 

 

Table 11. Performance in terms of MCC 
 

Dataset NB SVM DT 

CM1 0.292 ? 0.204 

KC1 0.260 0.040 0.256 

KC3 0.154 ? ? 

MC1 0.175 ? ? 

MC2 0.444 ? 0.108 

PC1 0.498 ? 0.371 

PC2 -0.034 ? ? 

 
Table 12. Performance in terms of AU-ROC 

 

Dataset NB SVM DT 

CM1 0.720 0.500 0.500 

KC1 0.693 0.505 0.595 

KC3 0.769 0.500 0.619 

MC1 0.832 0.500 0.500 

MC2 0.833 0.500 0.535 

PC1 0.930 0.500 0.873 

PC2 0.779 0.500 0.500 

 

5. Conclusions 

Over the past twenty years, one of the emergent fields in software engineering has been SDP 

using classification algorithms provided by machine learning. Using SDP, software with better- 

quality can be delivered using fewer resources, including money, manpower, and time. This 

study performed a GA-based detailed performance analysis on seven cleaned versions of NASA 

defect datasets. The application of GA for attribute selection in SDP has demonstrated 

remarkable effectiveness and has made significant contributions to the field. This study aimed to 

analyze the efficiency of classification algorithms by selecting the most relevant features, and the  

findings highlight that the effectiveness of the GA in achieving this objective is significant. Three 
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Classification algorithms were implemented: DT, NB, and SVM. The effectiveness of the 

classifiers was analyzed using precision, accuracy, recall, MCC, F-measure, and ROC. The results 

indicate that the AU-ROC area and accuracy did not respond to the class imbalance issue and, 

therefore, cannot be considered as efficient performance measures. However, MCC, precision, F- 

Measure, and recall respond to the class imbalance problem. This study serves as a foundational  

benchmark for researchers, as any new technique proposed for SDP can be compared and validated 

with the technique used in this research. In the future, the scope of this research can be enhanced 

by addressing the class imbalance issue and analyzing the performance of classification algorithms 

using ensemble learning techniques. 
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